
Second Answer Set Programming Modeling Competition
28 September 2015, Lexington, Kentucky, USA

A team consists of one to three members, using one computer. The number of correct submis-
sions (the last one submitted for a particular problem) within 120 minutes is used as the first
ranking criterion. Incorrect submissions cost nothing. For each correct submission, the time it
took to submit it (starting from some arbitrary time point) is added up: this total is used as a tie
breaker in case teams end up with the same number of correct solutions. If that doesn’t break
all ties, the organizers can use any other criterion like performance, space usage, coin tossing,
etc. Note that it is advantageous to submit solutions one by one, as soon as it is deemed correct,
rather than waiting to submit a bunch of solutions at once. Efficiency of your programs is not
important, but if your program fails to finish in a reasonable time, it is considered incorrect.

The name of the file that contains your submitted solution must be the same as given in
parentheses in the header of a task description: so, for the first problem, you make a file named
match.asp. Programs must be written in ASP-Core-2 (version 2.03b1), pragmatically taken
to be processible with clingo (version 4.5.32). The input to your program is always in the form
of facts; see examples in task descriptions. On any input, your program must specify (optimal)
solutions, determined by the output predicates given in task descriptions. Arbitrary auxiliary
predicates can be defined in addition but will be ignored in correctness evaluation.

Keep in mind:

Correctness matters, submission time matters, task order doesn’t matter. Good luck!

1https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
2http://sourceforge.net/projects/potassco/files/clingo/4.5.3/

1

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
http://sourceforge.net/projects/potassco/files/clingo/4.5.3/


1 Revenge of the List (match.asp)
Given two lists, say [a, b, c, b, d] and [b], where the second one provides a pattern, we are inter-
ested in all sublists of the first list starting with that pattern. Prolog experts may do the following:

?- append(_,L,[a,b,c,b,d]), append([b],_,L).
L = [b,c,b,d] ;
L = [b,d] ;
false.

However, this is about Answer Set Programming, and we represent a list and a pattern as above
in terms of facts like the following:

list(f(a,f(b,f(c,f(b,f(d,nil)))))). % [a,b,c,b,d]
find(f(b,nil)). % [b]

All sublists starting with the pattern shall be provided by atoms over the predicate match/1
in an answer set. Along with the instruction ‘#show match/1.’, a correct solution in file
match.asp yields the following clingo behavior:

$ clingo instance01.asp match.asp
clingo version 4.5.3
Reading from instance01.asp ...
Solving...
Answer: 1
match(f(b,f(c,f(b,f(d,nil))))) match(f(b,f(d,nil)))
SATISFIABLE

You can assume that there are one non-empty list and one non-empty pattern (both longer than
nil) per instance, while there is no length limitation. In particular, your solution must be able
to cope with patterns consisting of two or more elements.

2



2 Dominators Reign (dominator.asp)
Consider a directed graph with a distinguished entry node, such as a below:

a

b

c

d

e

A node n is a dominator of another node n′, if all paths from the entry node to n′ go through n.3

Basically by definition (when there are at least two nodes), the entry node dominates all other
nodes. Moreover, c dominates e above as all paths from the entry node a to e go through c. One
can check that no further node dominates another, so that a and c are the dominators of interest.

Put differently, a node n does not dominate another node n′, if there is a path from the entry
node to n′ that does not include n. So one can cast identifying dominators to checking which
nodes are not necessarily on a path to n′. For the entry node a above, it is clear that no other node
is necessary. Propagating this information to its direct successors b and c, we find that no other
node but a is necessary. Continuing further from b to d and from c to e, we see that c and e are
unnecessary for d as well as that b and d are unnecessary for e. Finally, we can proceed from e
to d to check that b is unnecessary for it either. In summary, we have identified the following sets
of unnecessary nodes: a : {b, c, d, e}, b : {c, d, e}, c : {b, d, e}, d : {b, c, e}, e : {b, d}. To read
off the dominators, it is now sufficient to check which nodes have some direct successor where
they are not unnecessary, in turn saying that they dominate. This applies to the entry node a and
its successors b and c as well as the successor e of c, thus reproducing the dominators identified
above. OK, this lengthy explanation sketches an idea to potentially encode in ASP, but stop here.

An instance like the directed graph above consists of facts as follows:

entry(a). edge(a,b). edge(a,c). edge(b,c). edge(b,d).
edge(c,a). edge(c,e). edge(e,b). edge(e,d).

All dominators in the given graph shall be provided by atoms over the predicate dominator/1
in an answer set. Along with the instruction ‘#show dominator/1.’, a correct solution in
file dominator.asp yields the following clingo behavior:

$ clingo instance01.asp dominator.asp
clingo version 4.5.3
Reading from instance01.asp ...
Solving...
Answer: 1
dominator(a) dominator(c)
SATISFIABLE

You can assume that no instance includes self-loops for any node, while all nodes are reachable
from the distinguished entry node.

3Also called strict dominator: https://en.wikipedia.org/wiki/Dominator_(graph_theory)

3

https://en.wikipedia.org/wiki/Dominator_(graph_theory)


3 Almost Unsatisfied (true.asp)
The well-known Boolean Satisfiability problem applies to clauses like this:

a ∨ ¬b ∨ c,¬a ∨ c ∨ ¬d, b ∨ d,¬c ∨ ¬d

These clauses have four models, expressed by the true propositions: {a, b}, {a, b, c}, {b, c}, {d}.
Observe that the first three have correspondents differing by one proposition only, which can be
toggled to move from one to the other model. Unlike that, if we turn d to false or either of a,
b, and c to true, the fourth model {d} yields an assignment not satisfying the clauses anymore.
Hence, we call {d} an almost unsatisfied model, in which we are interested in the following.

Clauses like the above are given by an instance as follows:

clause(1). literal(1,pos,a). literal(1,neg,b). literal(1,pos,c).
clause(2). literal(2,neg,a). literal(2,pos,c). literal(2,neg,d).
clause(3). literal(3,pos,b). literal(3,pos,d).
clause(4). literal(4,neg,c). literal(4,neg,d).

Note that the constants pos or neg are used to indicate whether a proposition occurs positively
or negatively in a clause. Moreover, some (not necessarily unique) almost unsatisfied model shall
be provided by atoms over the predicate true/1 in an answer set. Along with the instruction
‘#show true/1.’, a correct solution in file true.asp yields the following clingo behavior:

$ clingo instance01.asp true.asp
clingo version 4.5.3
Reading from instance01.asp ...
Solving...
Answer: 1
true(d)
SATISFIABLE

You can assume that no instance includes a tautological clause, i.e., a fact literal(c,pos,x)
is never accompanied by literal(c,neg,x), where c and x denote the same clause or propo-
sition, respectively.

4



4 Yosenabe (target.asp)
A good modeling competition features some Japanese grid puzzle. Luckily there is Yosenabe4:

55 4

4 2

3 2

2 4

61

1 2

1

3 4 5

Given a grid as above,5 initially without the arrows, the task is to move each number surrounded
by a frame into one of the gray areas along a straight line, respecting the following conditions:

1. The ways of any two moved numbers must not cross or meet at any grid cell.
2. Each gray area must be populated with at least one moved number.
3. An area may be associated with a (positive) goal number, shown within it. If so, the

numbers moved into the area must sum up exactly to the goal.
The (unique) solution indicated by arrows above fulfills these conditions. While a number can
be moved through an area, such as 4 above, you may assume that a move stops at the first cell
w.r.t. its direction of the area into which it leads. That is, regardless of number 5, it cannot help
to move 1 to the cell in the lower left corner as the move enters the same area already before.

An instance like the grid above consists of facts as follows:
cell(1,1). cell(1,2). ... cell(5,4). cell(5,5). number(1,5,5).
area(1,1,1). area(2,1,1). goal(1,6). number(3,1,1).
area(2,3,2). area(3,3,2). area(4,3,2). number(3,4,2).
area(3,5,3). area(4,5,3). area(5,5,3). goal(3,4). number(4,2,4).
area(5,1,4). number(5,3,2).
Note that the first two arguments in facts over area/3 and number/3 provide grid cells, and
the third an area identifier or a number to move, respectively. If an area is associated with a
goal number, its identifier is reused as first argument in a fact over goal/2, and the goal is
given by the second. Then, the moves in a solution shall be provided by atoms over the predicate
target/4 in an answer set, expressing a move in terms of coordinates of the initial cell as well
as the cell to which a number is moved. Along with the instruction ‘#show target/4.’, a
correct solution in file target.asp yields the following clingo behavior:
$ clingo instance01.asp target.asp
clingo version 4.5.3
Reading from instance01.asp ...
Solving...
Answer: 1
target(1,5,1,1) target(3,1,2,1) target(3,4,3,3) \
target(4,2,4,5) target(5,3,5,1)
SATISFIABLE

4http://www.nikoli.co.jp/en/puzzles/yosenabe.html
5Some Yosenabe puzzles to practice can be found here: http://www.janko.at/Raetsel/Yosenabe/

5

http://www.nikoli.co.jp/en/puzzles/yosenabe.html
http://www.janko.at/Raetsel/Yosenabe/


5 The Bishop and the Rook (place.asp)
In the final task, we consider the construction of an optimal placement of bishops and rooks,
attacking one another according to the rules of chess, while admitting rectangular chessboards:

4 BZR
3 S0A
2 BZ0
1 S0A

1 2 3

4 0ZB
3 Z0S
2 0ZB
1 ARZ

1 2 3

Given an empty board, bishops and rooks can be placed on it and attack in diagonal or straight
directions, respectively, all following cells up to next chess piece (inclusive) or the end of the
board, taking into account four conditions:

1. Two bishops must not be placed on adjacent cells (also diagonally), and likewise for rooks.
2. Two bishops must not attack each other, and likewise for rooks.
3. Each cell on which a bishop is placed, must be attacked by some rook, and vice versa.
4. Each cell of the board must be attacked by some chess piece.

The placements shown above fulfill these conditions. In particular, neither bishops nor rooks are
placed adjacent to a chess piece of the same kind, while a bishop adjacent to a rook is alright. On
the left, a bishop in between even keeps two rooks off from inadmissibly attacking each other.

We are interested in minimizing the total value of chess pieces placed on a board. The value
of a bishop is 2, and a rook has the value 3. Thus, the four bishops and three rooks on the left sum
up to a total value of 17, while the three bishops and two rooks on the right amount to 12 only.
Indeed, the placement on the right is one among four optimal placements with total value 12.

A rectangular board is simply represented by facts providing its cells:
cell(1,1). cell(1,2). ... cell(3,3). cell(3,4).
The placement of bishops and rooks shall be provided by atoms over the predicate place/3
in an answer set, including the constant bishop or rook and cell coordinates as arguments.
Along with the instruction ‘#show place/3.’, a correct solution in file place.asp yields
an optimal placement in a last answer set obtained like this:
$ clingo instance01.asp place.asp
clingo version 4.5.3
Reading from instance01.asp ...
Solving...
Answer: 1
place(bishop,1,2) place(bishop,1,4) place(bishop,3,1) \
place(bishop,3,3) place(rook,1,1) place(rook,1,3) place(rook,3,4)
Optimization: 17
Answer: 2
place(bishop,1,1) place(bishop,3,2) place(bishop,3,4) \
place(rook,2,1) place(rook,3,3)
Optimization: 12
OPTIMUM FOUND

6


	Revenge of the List (match.asp)
	Dominators Reign (dominator.asp)
	Almost Unsatisfied (true.asp)
	Yosenabe (target.asp)
	The Bishop and the Rook (place.asp)

