The 6th Answer Set Programming Competition

Martin Gebser, Marco Maratea, Francesco Ricca

13th International Conference on Logic Programming and Non-monotonic Reasoning

Outline

- 1 The Sixth ASP Competition
- 2 Format and Setup
- 3 Participants and Results

The Sixth ASP Competition

An event back to the usual timeline

- One year after the FLoC Olympic Games
- Hosted by LPNMR
- Biennial event

The Sixth ASP Competition

An event back to the usual timeline

- One year after the FLoC Olympic Games
- Hosted by LPNMR
- Biennial event

Goals

- Measure the progress of the state of the art in ASP solving
- Improve benchmarks suite for robust evaluation
- · Study the behavior of different solving techniques

The 6th Competition Setting

Improvements on the format

- Basic design choices maintained
- Some important novelties

The 6th Competition Setting

Improvements on the format

- Basic design choices maintained
- Some important novelties

Competition Setting

- System competition only and modeling competition on site
- Benchmark classification based on language features
- Benchmarks from past editions
 - → The best encodings from 2014
 - → Updated instance sets
 - → New "real-world" benchmarks
- New instance selection process
- Updated versions of solvers, and newcomers

Outline

- 1 The Sixth ASP Competition
- 2 Format and Setup
- 3 Participants and Results

System Competition Format

Sub tracks based on language features

```
Track 1 (Basic) normal LP + simple built-ins
```

Track 2 (Advanced) + choices, aggregates, HCF disjunction, query

Track 3 (Optimization) + weak constraints

Track 4 (Unrestricted) + non-HCF disjunction

Two Categories

- Single-Processor (restricted to 1-CPU Core)
- Multi-Processor (up to 8-CPU Cores)

System Competition Format

Sub tracks based on language features

```
Track 1 (Basic) normal LP + simple built-ins
```

Track 2 (Advanced) + choices, aggregates, HCF disjunction, query

Track 3 (Optimization) + weak constraints

Track 4 (Unrestricted) + non-HCF disjunction

Two Categories

- Single-Processor (restricted to 1-CPU Core)
- Multi-Processor (up to 8-CPU Cores)

Marathon ← *NEW*!!

- The best solver of each team
- Time limit extended by one order of magnitude
 - → Assess solvers on hard instances

Setup

System Inputs

- Fixed input in ASP-Core-2
- Scripts run with fixed parameters
- Fixed encoding + instance from STD input

System Environment

- Debian Linux 64bit with Intel Xeon E5-4610v2 CPUs
- Time limits
 - Competition: 20 minutes
 - Marathon: 3 hours
- Memory Limit: 12 GB
- Multi-processor track: up to 8 cores (16 virtual CPUs)

Scoring

ASP Competition 2014 Scoring

- Consider number of solved instances for decision problems
- Rank solvers on optimization problems by solution quality
- Runtime for tiebreaking

Decision and Query Problems

Score(Solver, Problem) = #Solved(Solver) * 5

Optimization Problems

Score(Solver, Problem) =
$$\sum_{\text{Instances } I} \frac{\#\text{NotBetter}(\text{Solver}, I) * 5}{\#\text{Participants}}$$

Scoring

ASP Competition 2014 Scoring

- Consider number of solved instances for decision problems
- Rank solvers on optimization problems by solution quality
- Runtime for tiebreaking

Additional Criteria

- Problems are equally weighted up to 100 points each
- Incorrect answers: disqualification on per problem basis
- Final scores by summing over all problems

Benchmark Suite

Benchmarks from 2014

- Considered all the domains from 5th edition
- Selected the encoding variant that exhibited better performance in the 5th edition
- Updated instance sets for
 - Knight Tour with Holes, Stable Marriage,
 - Ricochet Robots, and Maximal Clique
- Hardness-based classification of instances
 - Inspired of SAT Competition
 - Exploiting best solvers from the 5th competition
 - Robust selection

Benchmark Suite: Domains from past editions

Domain	App	Problem	Encoding]
Graph Colouring		Decision	2014	
Hanoi Tower		Decision	2014	1 ⇒
Knight Tour with Holes		Decision	2014	Track #1
Labyrinth		Decision	2013	Ě
Stable Marriage		Decision	2014	#
Visit-all		Decision	2014	
Bottle Filling		Decision	2013	
Graceful Graphs		Decision	2013	1
Incremental Scheduling	$\sqrt{}$	Decision	2014	1
Nomystery		Decision	2014	1
Partner Units	$\sqrt{}$	Decision	2014] ⊒
Permutation Pattern Matching		Decision	2014	Track #2
Qualitative Spatial Reasoning		Decision	2014	1 🛣
Reachability		Query	2013	75
Ricochet Robots		Decision	2013	1
Sokoban		Decision	2014	1
Solitaire		Decision	2014	1
Weighted-Sequence Problem		Decision	2014	
Connected Still Life*		Optimization	2013	П
Crossing Minimization	√	Optimization	2014	Track #3
Maximal Clique		Optimization	2014	1 🛣
Valves Location	$\sqrt{}$	Optimization	2013	1 25
Abstract Dialectical Frameworks		Optimization	2013	ı
Complex Optimization	√	Decision	2014	Track #4
Minimal Diagnosis		Decision	2014	, ,
Strategic Companies		Query	2013	4

Benchmark Suite: New domains

Domain	App	Problem	
Combined Configuration		Decision	Ħ
Consistent Query Answering		Query	#2
MaxSAT		Optimization	
Steiner Tree	$\sqrt{}$	Optimization	Track
System Synthesis	$\sqrt{}$	Optimization	
Video Streaming		Optimization	#3

Benchmark Classification (1)

Run the three best solvers of 5th ASP Comp

- clasp, lp2normal+clasp, wasp1.5
- same setting as competition
- 40 min TO (twice the timeout)

Some numbers

- 32 domains
- 5058 instances
- about 212 days of execution

Benchmark Classification (2)

- (non-groundable) Instances that could not be grounded by any top-performing system within the timeout.
- (very easy) Instances solved by all top-performing systems in less than 20 seconds.
 - (easy) Instances solved by all top-performing systems in less than 2 minutes.
 - (medium) Instances solved by all top-performing systems within the timeout.
 - (hard) Instances solved by at least one among the top-performing systems within 40 minutes.
 - (too hard) Instances that could not be solved (no solution produced in case of Optimization problems) by any of the top-performing systems within 40 minutes.

Instance Selection

Instance Selection (Criteria)

- 20 instances are included in each domain
- Exclude non-groundable instances
- Each class shall contribute 20% to each domain
- Discard domains mostly made of easy instances
- Balance satisfiable and unsatisfiable instances for decision
- Prefer satisfiable instances for optimization and query
- Random selection from each class + 20% totally random

Instance Selection

Instance Selection (Criteria)

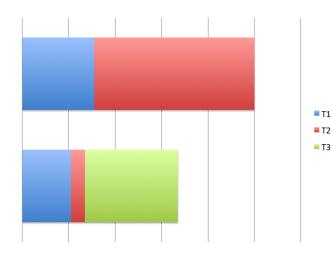
- 20 instances are included in each domain
- Exclude non-groundable instances
- Each class shall contribute 20% to each domain
- Discard domains mostly made of easy instances
- Balance satisfiable and unsatisfiable instances for decision
- Prefer satisfiable instances for optimization and query
- Random selection from each class + 20% totally random
- Selection implemented in ASP!!!!!
- Random seed: the concatenation of winning numbers in the EuroMillions lottery of 23rd June 2015

Selection Statistics

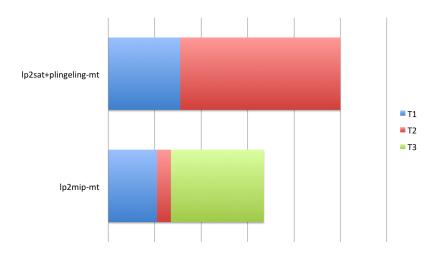
Benchmark Suite

- 28 selected problems
- 4 too easy/uneven problems discarded
 - BottleFillingProblem
 - HanoiTower
 - Solitaire
 - Weighted-SequenceProblem
- 88 non-groundable instances
 - 86 IncrementalScheduling
 - 2 Sokoban
- Statistics about old solvers
 - Can be used for measuring the improvement of the state of the art

Outline

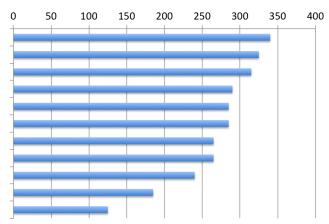

- 1 The Sixth ASP Competition
- 2 Format and Setup
- 3 Participants and Results

Participants

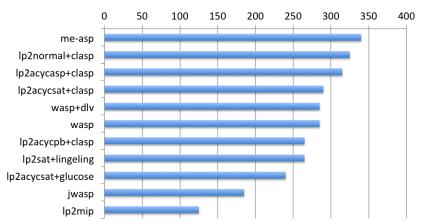

The competition featured 13 systems coming from three teams

- Aalto Team, Aalto University (9 solvers):
 LP2SAT+LINGELING, LP2SAT+PLINGELING-MT, LP2ACYCASP+CLASP,
 LP2ACYCPB+CLASP, LP2ACYCSAT+CLASP, LP2ACYCSAT+GLUCOSE,
 LP2MIP, LP2MIP-MT, LP2NORMAL+CLASP
- ME-ASP Team, University of Genoa, University of Sassari, University of Calabria (1 solver):
 ME-ASP
- Wasp Team, University of Calabria (3 solvers): WASP, WASP+DLV, JWASP

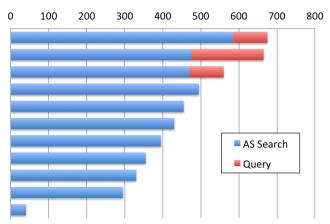
Results: Multi Processor Track

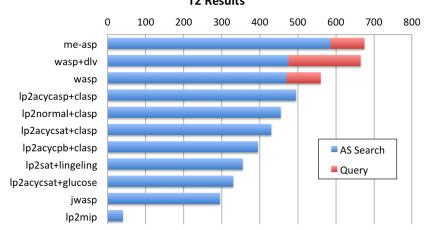


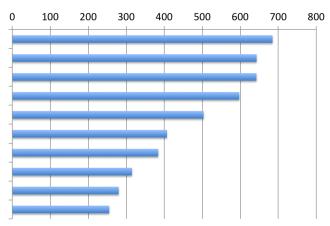
Results: Multi Processor Track

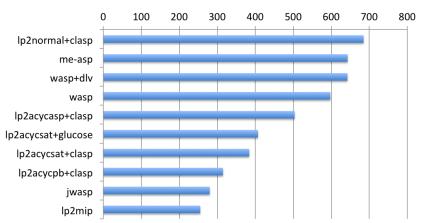

Results: Track 1 - Basic

T1 Results

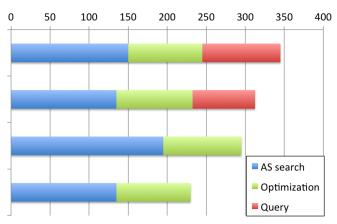

Results: Track 1 - Basic

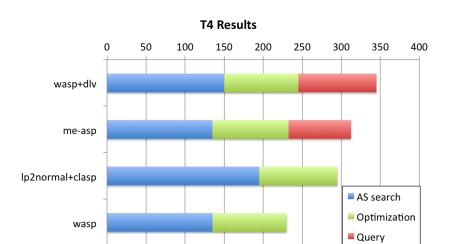

Results: Track 2 - Advanced


Results: Track 2 - Advanced

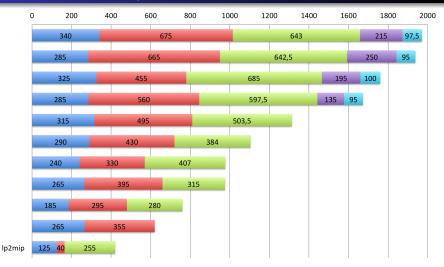

Results: Track 3 - Optimization

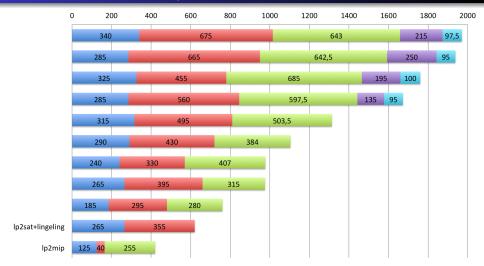
T3 Results

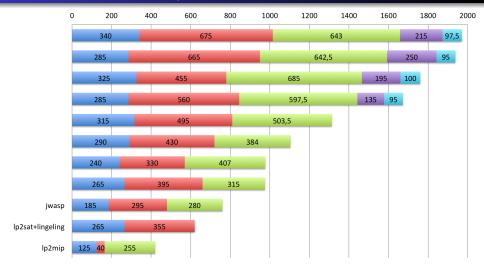

Results: Track 3 - Optimization

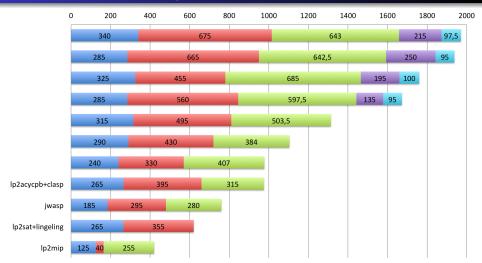


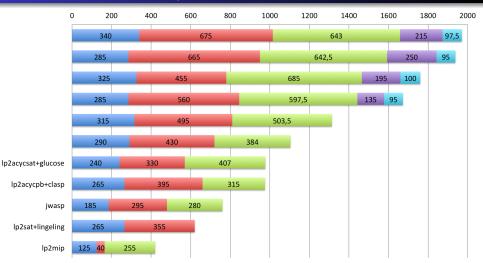

Results: Track 4 - Unrestricted

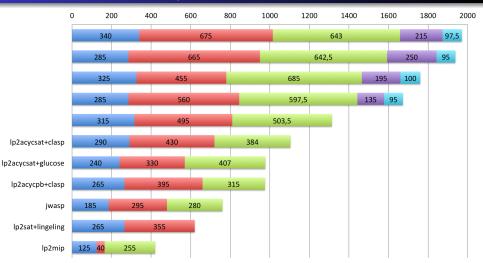


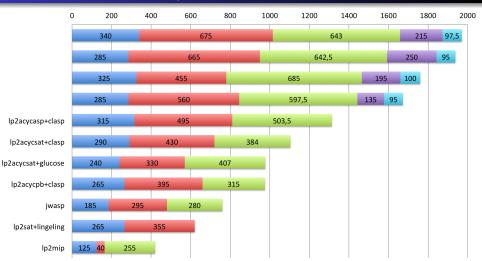


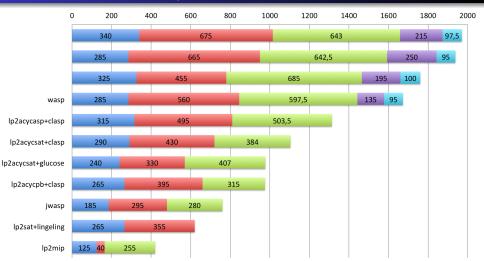

Results: Track 4 - Unrestricted

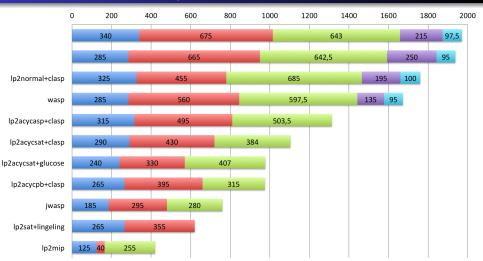


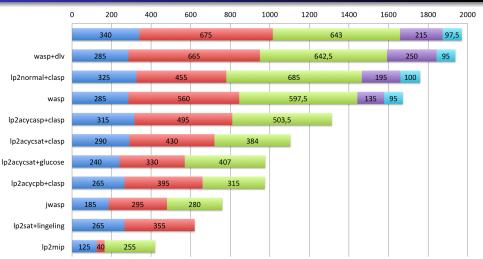


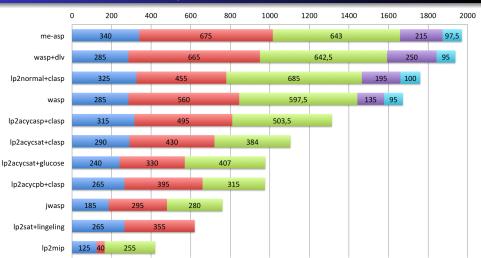


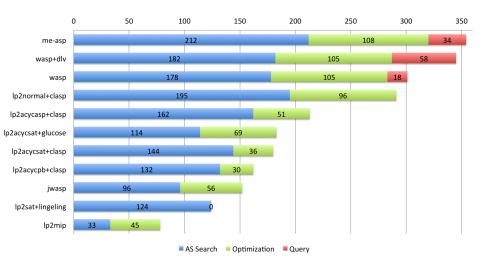


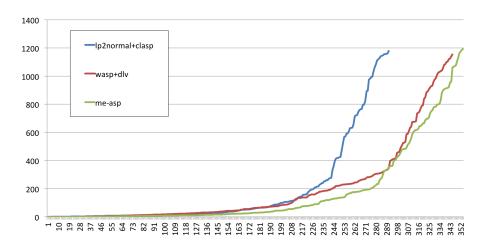


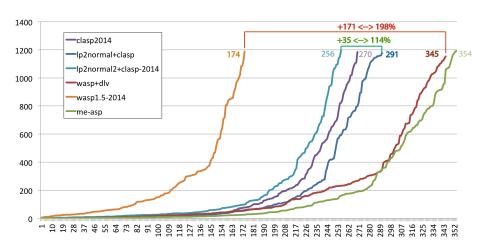




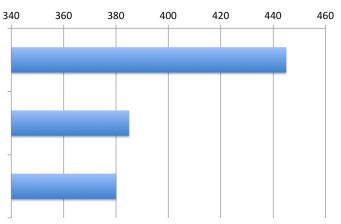




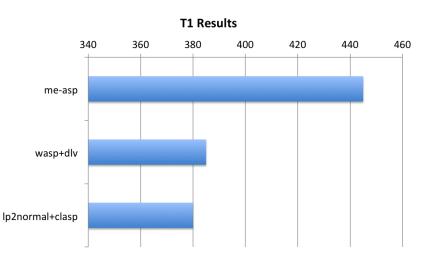



Results: Solved By Task

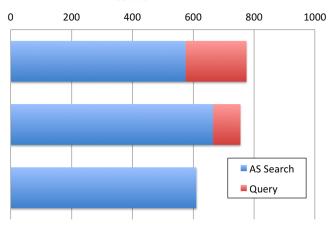
Results: Cactus Plot



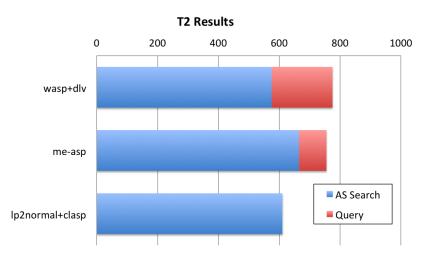
Results: State of the art



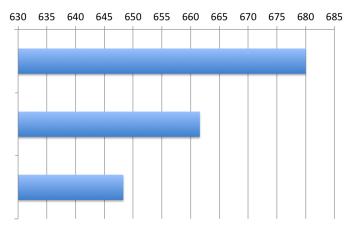
Results: Marathon Track 1 - Basic



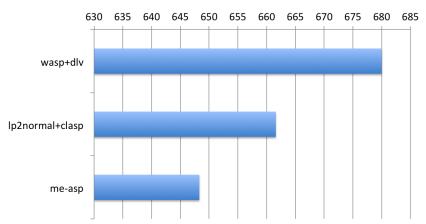
Results: Marathon Track 1 - Basic



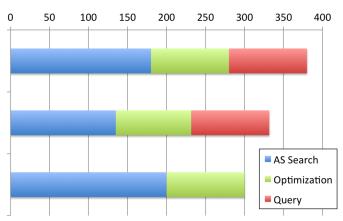
Results: Marathon Track 2 - Advanced



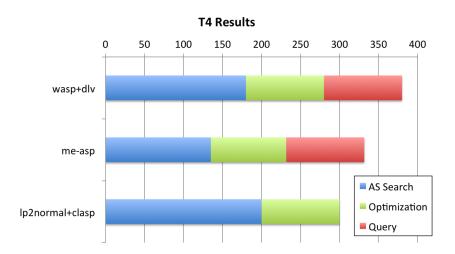
Results: Marathon Track 2 - Advanced


Results: Marathon Track 3 - Optimization

T3 Results


Results: Marathon Track 3 - Optimization

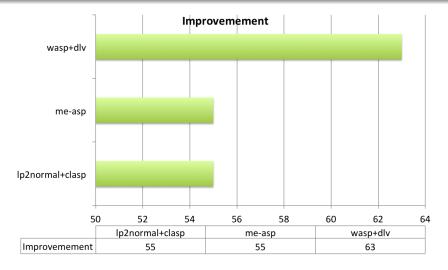
T3 Results

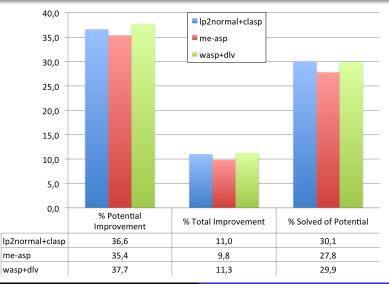


Results: Marathon Track 4 - Unrestricted

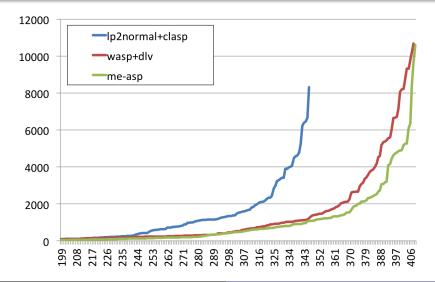


Results: Marathon Track 4 - Unrestricted

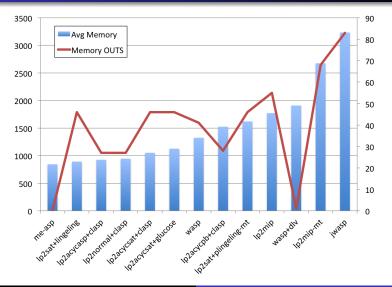



Results: Marathon Solved By Task

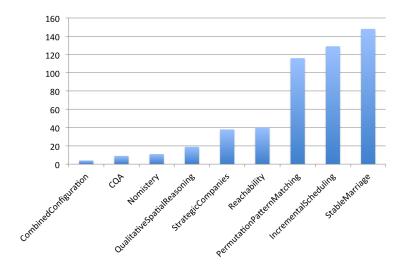
Results: Marathon Improvements

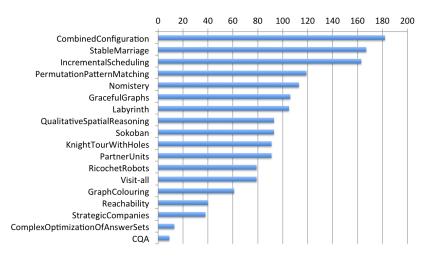


Results: Marathon Stats



57/66


Results: Marathon Cactus Plot


Results: Memory usage

Results: Memory out by domain

Results: Timeouts by Domain

Simplify Output

- Unify output for tasks
- Reduce number of exit codes

Instance Selection

- Process for discarding very easy/hard
- More ASP-oriented real-world applications
- Enforce classification by language features
- Non-ground and ground tracks?
- Cautious/Brave Reasoning?

Modeling Competition

Interactive event? Challenges? . . .

Simplify Output

- Unify output for tasks ← DONE!
- Reduce number of exit codes ← DONE!

Instance Selection

- · Process for discarding very easy/hard
- More ASP-oriented real-world applications
- Enforce classification by language features
- Non-ground and ground tracks?
- Cautious/Brave Reasoning?

Modeling Competition

• Interactive event? Challenges? ...

Simplify Output

- Unify output for tasks ← DONE!
- Reduce number of exit codes ← DONE!

Instance Selection

- Process for discarding very easy/hard ← DONE!
- More ASP-oriented real-world applications ← DONE!
- Enforce classification by language features ← DONE!
- Non-ground and ground tracks?
- Cautious/Brave Reasoning?

Modeling Competition

Interactive event? Challenges? . . .

Simplify Output

- Unify output for tasks ← DONE!
- Reduce number of exit codes ← DONE!

Instance Selection

- Process for discarding very easy/hard ← DONE!
- More ASP-oriented real-world applications ← DONE!
- Enforce classification by language features ← DONE!
- Non-ground and ground tracks? Need for more grounders!
- Cautious/Brave Reasoning? Brave reasoning is missing

Modeling Competition

Interactive event? Challenges? ...ideas?

Suggestions for future ASP events (1)

Simplify Output

- Avoid using exit codes with custom semantics
 - → Easy choice for SAT, not for ASP solver scripts!
- Embrace POSIX-compatible convention
 - → Zero for success and non-zero for error

Scoring

- Less dependent on number of participants
- More emphasis on solved (optimal) solutions
 - ightarrow 5 points is too much for non-optimal witnesses
- Two rankings?

Suggestions for future ASP events (2)

Benchmark Suite

- Maintain classification by hardness
- Don't stop adding ASP-oriented real-world applications
- Maintain classification by language features
- Maintain some more easy domains

Reasoning Tasks

- Brave Reasoning
- Propositional program evaluation
- Tracks for extended language features

Suggestions for future ASP events (3)

Modeling Competition

- · Keep it as it is... pure fun!
- Open to remote participation as LP/CP Contest at ICLP
- More advertisement

Extend the ASP Development community

- ASPLib web site
- Lower the entrance barrier
 - → Emphasize winners of tracks...
- · · · ideas?

Thanks

Thank you for your attention!

Thanks

Thank you for your attention!

Award ceremony during the social dinner!