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Abstract

Answer Set Programming (ASP) is a well-established paradigm of declarative
programming that has been developed in the field of logic programming and non-
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prises also additional analyses that were conceived for measuring the progress of
the state of the art, as well as for studying aspects orthogonal to solving technol-
ogy, such as the effects of modeling. A detailed picture of the progress of the
state of the art in ASP solving is drawn, and the ASP Competition is located in
the spectrum of related events.
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1. Introduction

Answer Set Programming (ASP) (Baral, 2003; Brewka et al., 2011; Eiter
et al., 1997, 2000, 2009; Gelfond and Leone, 2002; Gelfond and Lifschitz, 1988,
1991; Lifschitz, 2002; Marek and Truszczyński, 1999; Niemelä, 1999) is a well-
established declarative programming approach to knowledge representation and
reasoning, proposed in the area of logic programming and non-monotonic reason-
ing. The idea of ASP is to represent a given problem by means of a logic program
whose stable models or answer sets correspond to solutions, and then to use an
ASP solver for computing solutions. The availability of high-performance imple-
mentations, e.g. (Alviano et al., 2013b; Dal Palù et al., 2009; Gebser et al., 2012a,
2013; Giunchiglia et al., 2006; Janhunen et al., 2006; Leone et al., 2006; Lin and
Zhao, 2004; Liu et al., 2012; Mariën et al., 2008; Simons et al., 2002), made ASP
a powerful tool for developing advanced applications. Nowadays, ASP has been
employed in many research areas ranging from Artificial Intelligence to Databases
and Bioinformatics; moreover, it has already been used in industrial systems, e.g.
(Nogueira et al., 2001; Ricca et al., 2012; Tiihonen et al., 2003).

The advances in ASP solving technology are customarily assessed in com-
petition events (Brewka et al., 2002; Gebser et al., 2007; Denecker et al., 2009;
Calimeri et al., 2014c; Alviano et al., 2013a), as it happens for other closely re-
lated problem solving areas such as Boolean Satisfiability (SAT), Satisfiability
Modulo Theories (SMT), Quantified Boolean Formulas (QBF), and Planning, to
mention a few. ASP Competitions are (usually) biennial events; however, the fifth
edition departed from tradition and took place in 2014, affiliated with the 30th In-
ternational Conference on Logic Programming (ICLP 2014), in order to join the
FLoC Olympic Games at the Vienna Summer of Logic.

The Fifth ASP Competition (Calimeri et al., 2014b) featured a revised setup
with novelties involving every aspect of the design from the definition of tracks to
the scoring scheme. The new design aims at lowering the efforts of participating
in the event, and further pushes the adoption of the recent standard language ASP-
Core-2 (Calimeri et al., 2013) introduced in 2013. Indeed, in 2013, the ASP-
Core-2 language was not fully supported yet by most implementations, and/or
the participants did not have enough time to integrate new language features in a
completely satisfactory way. Taking these considerations into account, the Fifth
ASP Competition was based on the System track of the 2013 edition,2 reusing the

2In the 2013 edition, the “System track” was conceived to assess ASP systems on a fixed set
of problem encodings. A detailed comparison with the 2013 format is reported in Section 7.
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available benchmarks but also adding novel problem encodings.
The benchmark domains were classified by the language features used in en-

codings (e.g. choice rules, aggregates, presence of queries), rather than by prob-
lem “complexity” considered in past events (Calimeri et al., 2012). The competi-
tion tracks were devised in accordance with the new benchmark classification and
by carefully considering the increasing effort needed for the implementation of
specific language features. This was intended not only to widen participation, but
also to properly analyze benchmarks and solvers’ performance from the perspec-
tive of the language. Concerning participants, competitors in the 2013 edition as
well as newcomers were invited to participate.

This paper provides a comprehensive report of the Fifth ASP Competition
along with an in-depth analysis of results, originally published on the competi-
tion homepage (Calimeri et al., 2014b). For one, novel problem encodings were
devised to furnish an extended benchmark collection and to assess the impact of
modeling on the ASP solving process. For another, the most successful systems
submitted in 2013 were run against new versions to evaluate the progress. More-
over, the competition setup is compared to those in other problem solving areas.
As a result, this paper draws a detailed picture of the state of the art in ASP solv-
ing, and locates the ASP Competition in the spectrum of related events.

The remainder of this paper is structured as follows. Section 2 provides the
reader with proper preliminaries about the ASP-Core-2 language. The competition
setup is discussed in Section 3, while Sections 4 and 5 present the domains and
ASP systems, respectively, taking part in the competition. Section 6 announces the
competition winners and analyzes the results. In Section 7, the competition design
is compared to those of previous editions as well as related events. Section 8
concludes the paper, also pointing out some recommendations for future editions.

2. The ASP-Core-2 Language: Syntax and Semantics

The input language for competition benchmarks, represented in terms of a uni-
form (first-order) problem encoding along with (ground) facts specifying a prob-
lem instance, follows the ASP-Core-2 standard (Calimeri et al., 2013). The syntax
of ASP-Core-2 includes elements from classical first-order logic, i.e. terms, atoms,
and connectives, as well as extensions like integer arithmetic, aggregates, weak
constraints, and queries. These constituents provide a conceptually simple yet
powerful modeling language for expressing computational problems with diverse
features and complexity. For example, a data representation of the directed graph
with arc costs displayed in Figure 1(a) is shown in Figure 1(b), where nodes, arcs,
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(a) A directed graph
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(b) Fact representation of the graph in (a)

arc(1, 2)← cost(1, 2, 3)← node(1)←
arc(2, 1)← cost(2, 1, 2)← node(2)←
arc(2, 3)← cost(2, 3, 1)← node(3)←
arc(3, 2)← cost(3, 2, 2)← node(4)←
arc(3, 4)← cost(3, 4, 2)←
arc(4, 3)← cost(4, 3, 2)←
arc(1, 4)← cost(1, 4, 1)←
arc(4, 1)← cost(4, 1, 2)←

Figure 1: An example graph with arc costs that constitutes a TSP instance

and their associated costs are specified in terms of facts over corresponding pred-
icates. Given such instance data, the following ASP-Core-2 program encodes the
well-known Traveling Salesperson Problem (TSP):

{hc(X, Y ) : arc(X, Y )} = 1 ← node(X) (1)
← node(Y ),#count{X : hc(X, Y )} 6= 1(2)

reach(X) ← #min{Y : node(Y )} = X (3)
reach(Y ) ← reach(X), hc(X, Y ) (4)

← node(X),not reach(X) (5)
� hc(X, Y ), cost(X, Y,C) [C@1, X, Y ] (6)

Without going into details yet, note that the rules in (1) and (2) express that, for
every node, exactly one outgoing and one incoming arc must be part of a Hamil-
tonian cycle, i.e. a round trip that visits each node, and the selected arcs are rep-
resented by (true) atoms over the predicate hc. Then, starting from some arbitrary
yet fixed node, taken to be the lexicographically smallest one in (3), further nodes
reachable via selected arcs are derived by the rule in (4). Given that a round trip
must visit all nodes, the so-called integrity constraint in (5) denies isolated sub-
cycles, indicated by a node whose corresponding atom over the predicate reach
does not hold. In turn, every node must be reached from the starting node, so that
the true atoms over the predicate hc provide a Hamiltonian cycle. The objective
of finding a Hamiltonian cycle with minimum cost is formulated in terms of the
weak constraint in (6), which penalizes any selected arc by its cost. The (unique)
optimal round trip for the example graph in Figure 1(a) includes the arcs (1, 4),
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(4, 3), (3, 2), and (2, 1), yielding an accumulated cost of 7. However, note that the
first-order ASP-Core-2 program in (1)–(6) uniformly encodes the Optimization
problem TSP for any directed graph specified by facts like those in Figure 1(b).

In what follows, we review the syntax and semantics of ASP-Core-2 programs,
laying the ground for the classification of competition benchmarks into tracks (see
Section 3). As usual, terms are composed of constants, variables, and functions.
Dedicated arithmetic terms have the form −(t) or (t � u) with � ∈ {+,−, ∗, /}.
Terms and ≺ ∈ {<,≤,=, 6=, >,≥} are used to construct three kinds of atoms:

• classical atoms p(t1, . . . , tn) and ¬p(t1, . . . , tn) for a predicate name p and
terms t1, . . . , tn,

• built-in atoms t ≺ u for terms t and u, and

• aggregate atoms #agg{e1; . . . ; ek} ≺ u for #agg ∈ {#count,#sum,
#max,#min}, where ei (1 ≤ i ≤ k) is an aggregate element t1, . . . , tn :
l1, . . . , lm in which t1, . . . , tn are terms and l1, . . . , lm are naf-literals, i.e.
built-in atoms t ≺ u or expressions a and not a for classical atoms a.

Note that not stands for default negation, and literals in general include naf-
literals as well as a and not a for aggregate atoms a.

ASP-Core-2 programs consist of rules, possibly accompanied by weak con-
straints or a query. A rule r is of the form a1 | . . . | am ← b1, . . . , bn, where
a1, . . . , am are classical atoms for m ≥ 0 and b1, . . . , bn are literals for n ≥ 0.
If m = 1 and n = 0, r is also called a fact, and r is a disjunctive rule if m > 1.
Moreover, choice rules have the form {e1; . . . ; ek} ≺ u ← b1, . . . , bn, where ei
(1 ≤ i ≤ k) is a choice element a : l1, . . . , lm in which a is a classical atom and
l1, . . . , lm are naf-literals. A weak constraint � b1, . . . , bn [w@l, t1, . . . , tm] asso-
ciates literals b1, . . . , bn with a weight w, a level l, and additional terms t1, . . . , tm
for m ≥ 0. Finally, a? is a query for a classical atom a.

An atom, a rule, or an ASP-Core-2 program is ground if it does not contain any
variables or arithmetic terms, and an interpretation I is a consistent set of ground
classical atoms, i.e. p(t1, . . . , tn) and ¬p(t1, . . . , tn) must not jointly occur in I
for any predicate name p and terms t1, . . . , tn. The satisfaction relation w.r.t. I is
defined inductively by

• I |= a for a classical atom a, if a ∈ I , otherwise I |= not a;

• I |= t ≺ u, if t ≺ u according to the definition in (Calimeri et al., 2013,
Section 2.3);
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• I |= #agg{e1; . . . ; ek} ≺ u for #agg ∈ {#count,#sum,#max,#min},
if #agg(T ) ≺ u, where T =

⋃
1≤i≤k,ei=t1,...,tn:l1,...,lm

{(t1, . . . , tn) | I |= l1,
. . . , I |= lm} is the (finite) set of tuples (t1, . . . , tn) for aggregate elements
t1, . . . , tn : l1, . . . , lm whose naf-literals l1, . . . , lm are satisfied w.r.t. I , and

– #count(T ) = |T |,
– #sum(T ) =

∑
(t1,...,tn)∈T with integer t1 t1,

– #max(T ) = max{t1 | (t1, . . . , tn) ∈ T}, and

– #min(T ) = min{t1 | (t1, . . . , tn) ∈ T},3

while I |= not #agg{e1; . . . ; ek} ≺ u otherwise;

• I |= {e1; . . . ; ek} ≺ u, if |
⋃

1≤i≤k,ei=a:l1,...,lm
{a ∈ I | I |= l1, . . . ,

I |= lm}| ≺ u;

• I |= a1 | . . . | am for classical atoms a1, . . . , am, if {a1, . . . , am} ∩ I 6= ∅.

A rule of the form A ← b1, . . . , bn is satisfied w.r.t. I , if I |= b1, . . . , I |= bn
implies I |= A. Moreover, I is a model of a ground ASP-Core-2 program P ,
if every rule in P is satisfied w.r.t. I . Following (Faber et al., 2004, 2011) in
extending the original notion (Gelfond and Lifschitz, 1991) to aggregates, the
reduct P I of P w.r.t. I is obtained in two steps:

1. Delete all rules A← b1, . . . , bi, . . . , bn from P such that I 6|= bi.

2. Replace remaining choice rules {e1; . . . ; a : l1, . . . , lm; . . . ; ek} ≺ u ←
b1, . . . , bn by rules a ← b1, . . . , bn, l1, . . . , lm for choice elements a :
l1, . . . , lm such that a ∈ I and I |= l1, . . . , I |= lm.

Then, a model I of P is an answer set of P , if I is a ⊆-minimal model of P I .
That is, all rules of P have to be satisfied w.r.t. I , and the (true) atoms in I must
be “derivable” from the applicable rules in P I . A ground query a? holds for P , if
a belongs to every answer set of P . Moreover, let P I

l denote the sum of integers w
over all distinct tuples (w, t1, . . . , tm) such that P contains some weak constraint
� b1, . . . , bn [w@l, t1, . . . , tm] with I |= b1, . . . , I |= bn. An answer set I of P is

3By convention (Calimeri et al., 2013, Section 2.4), #max(∅) < u and #min(∅) > u hold for
every term u, so that all aggregates #agg(T ) ≺ u can be evaluated w.r.t. any interpretation I .
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optimal, if there is no answer set J of P such that P J
l < P I

l for an integer l and
P J
l′ = P I

l′ for all integers l′ > l.
Depending on the class of programs under consideration, verifying ⊆-

minimality w.r.t. P I can be tractable or computationally complex (Eiter and Got-
tlob, 1995). The syntactic property of head-cycle-freeness (Ben-Eliyahu and
Dechter, 1994) allows for distinguishing such cases based on the positive de-
pendency graph of a ground program P , having the atoms in P as nodes and
arcs from head atoms a1, . . . , am of a1 | . . . | am ← b1, . . . , bn or a in {e1; . . . ; a :
l1, . . . , lm; . . . ; ek} ≺ u ← b1, . . . , bn to the classical atoms among b1, . . . , bn as
well as l1, . . . , lm. Then, P is head-cycle-free (HCF), if there is no disjunctive rule
a1 | . . . | am ← b1, . . . , bn in P such that two or more of the head atoms a1, . . . , am
share some strongly connected component in the positive dependency graph of P ;
otherwise, P is non-HCF. Furthermore, P is non-tight, if some strongly connected
component in its positive dependency graph contains an arc, and tight otherwise
(Fages, 1994; Erdem and Lifschitz, 2003); if P is non-HCF, it is also non-tight,
but not necessarily vice versa. The check whether a model is an answer set of P is
tractable for HCF programs but coNP-complete for non-HCF programs. Also note
that our account of head-cycle-freeness could disregard aggregate atoms, since
ASP-Core-2 restrictions on their usage (see (Calimeri et al., 2013)) do not permit
circular (positive) dependencies through aggregates.

The semantics of a non-ground program P , possibly including arithmetic
terms, is given by the answer sets of its ground instantiation. To this end, variables
in a rule or weak constraint r are distinguished into global variables, appearing
outside of aggregate and choice elements in r, while the remaining variables are
local. A ground instance of r is obtained in two steps:

1. Apply a global substitution σ that maps the global variables in r to ground
terms yielding a rule rσ without global variables.

2. Replace any aggregate or choice element e in rσ by the collection of all
aggregate or choice elements eθ obtainable by applying local substitutions θ
that map the local variables in e to ground terms.

For example, applying the global substitution {X 7→ 1} to the rule in (1) gives
{hc(1, Y ) : arc(1, Y )} = 1 ← node(1). Mapping the local variable Y to the
nodes 1, 2, 3, and 4 then leads to the ground instance {hc(1, 1) : arc(1, 1);
hc(1, 2) : arc(1, 2); hc(1, 3) : arc(1, 3); hc(1, 4) : arc(1, 4)} = 1 ← node(1).
Note that applicable substitutions σ and θ are required to be well-formed (see
(Calimeri et al., 2013)), that is, the arithmetic evaluation of arithmetic terms that
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do not contain variables must be well-defined. Global substitutions σ violating
this condition cannot be used to obtain rσ from a rule r, while a respective local
substitution θ does not yield an instance eθ of an aggregate or choice element e.

The ground instantiation of a program P , denoted by grnd(P ), is the collec-
tion of all ground instances of rules or weak constraints in P obtainable by apply-
ing well-formed substitutions and evaluating arithmetic terms. Then, the (optimal)
answer sets of P are the (optimal) answer sets of grnd(P ), possibly subject to a
query in P , where the answer to a non-ground query a? consists of all ground
instances of atom a that belong to every answer set of P . Taking the prerequi-
sites of instantiation procedures like “intelligent grounding” (Faber et al., 2012)
into account, non-ground ASP-Core-2 programs have to comply with additional
requirements (Calimeri et al., 2013), such as finiteness of answer sets and safety.
In a nutshell, these conditions require the availability of (positive) occurrences of
variables within the bodies of rules as well as aggregate or choice elements in or-
der to restrict the relevant substitutions and enable grounders to compute a (finite)
ground program, which is typically much smaller yet equivalent to grnd(P ).

Reconsidering the TSP instance in Figure 1(b) along with the encoding in
(1)–(6), the choice rule in (1) expresses that exactly one outgoing arc must be
selected per node for representing a Hamiltonian cycle in terms of (true) atoms
over the predicate hc. While the local variable Y occurs in a choice element only,
X is global, so that an instance of (1) is obtained for each of the nodes 1, 2,
3, and 4 in the example graph. On the other hand, Y is global in the integrity
constraint in (2), i.e. a rule with an empty head that cannot be satisfied. Hence,
the #count atom requires that exactly one incoming arc per node is included in
a Hamiltonian cycle. In (3), the lexicographically smallest node name, that is,
1 in our example, is determined by a #min atom, assigned to X , and the node
thus marked as initially reached. The idea of the rule in (4) is to derive further
nodes as reached by tracing the arcs in a Hamiltonian cycle. Note that instances
of (4) yield circular positive dependencies among ground atoms over the reach
predicate, so that ground instantiations are non-tight (and HCF since there are no
proper disjunctive rules). The requirement that all nodes must be reached is as-
serted by the integrity constraint in (5). In view of the ⊆-minimality of an answer
set w.r.t. the reduct, models containing isolated subcycles, e.g. between nodes 1
and 4 as well as 2 and 3, are thus discarded, so that answer sets correspond one-to-
one to Hamiltonian cycles in a directed graph given as instance. For the example
graph in Figure 1(a), there are two answer sets representing the Hamiltonian cy-
cles (1, 2, 3, 4, 1) and (1, 4, 3, 2, 1). Their contained arcs are penalized by their
costs (at the common level 1) via instances of the weak constraint in (6). Given
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that arc costs for (1, 2, 3, 4, 1) and (1, 4, 3, 2, 1) sum to 8 or 7, respectively, only
the answer set representing (1, 4, 3, 2, 1) in terms of the atoms hc(1, 4), hc(4, 3),
hc(3, 2), and hc(2, 1) is optimal.

3. Format of the Fifth ASP Competition

The competition builds on the basis of the 2013 edition, offering former and
new participants the chance to submit updated and/or novel solvers, and the focus
is on the System track, i.e. fixed encodings. As already discussed in Section 1, par-
ticular emphasis is placed on ASP-Core-2 language features in order to establish
a uniform setting for running and comparing participant systems.

Starting from past experience, one objective was to simplify the scoring sys-
tem w.r.t. the 2013 edition (see (Alviano et al., 2013a)), and to properly adjust it in
the case of Optimization problems, while preserving the general idea of rewarding
systems that perform well in a variety of domains and produce solutions of better
quality. However, simplified scoring is just a starting point for fostering meaning-
ful solver comparisons. Moreover, tracks are now conceived based on language
features, rather than on a complexity basis. The rationale is to encourage the
submission of solvers even if they are limited or specialized, respectively, to a
language fragment. In addition, this track design paves the way to more detailed
analyses of what (combinations of) techniques work well for particular language
features. In our opinion, respective insights are, from a scientific point of view,
more interesting than merely reporting track winners.

In the remainder of this section, we describe the competition design, introduce
categories and tracks, and present the scoring system. Further details about the
ASP Competition series and past editions thereof are provided in Section 7.

3.1. Competition Design
In view of the objective of comparing participant systems in a uniform setting,

this edition of the ASP Competition did not include a Model&Solve track, but
took place in the spirit of the former System track: it was open to any general-
purpose solving system, provided it was able to process ASP-Core-2 programs.
The general input-output format followed the 2013 edition, so that previous Sys-
tem track submissions should (in principle) be able to participate again. However,
the 2013 edition still made exceptions and admitted problem encodings in legacy
formats, while the Fifth ASP Competition insisted on ASP-Core-2 compliance.
Benchmark domains, encodings, and instances used to assess participant systems
were selected by the Organizing Committee; they are detailed in Section 4.
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3.2. Competition Categories
The competition consists of two categories, depending on the computational

resources allotted to each running system:

• SP: One processor allowed;

• MP: Multiple processors allowed.

While the SP category aims at sequential solving systems, parallelism can be
exploited in the MP category.

3.3. Competition Tracks
Both categories of the competition are structured into four tracks, which are

described next:

• Track #1: Basic Decision. Encodings are normal logic programs, with sim-
ple arithmetic and comparison operators.

• Track #2: Advanced Decision. Encodings exploit the full language, with
queries, excepting optimization statements and non-HCF disjunction.

• Track #3: Optimization. Encodings exploit the full language with optimiza-
tion statements, excepting non-HCF disjunction.

• Track #4: Unrestricted. Encodings exploit the full language.

3.4. Scoring System
The adopted scoring system balances the following factors:

• Domains are always weighted equally.

• If a system outputs an incorrect answer to some instance in a domain, this
invalidates its score for the whole domain, even if all other instances are
correctly solved.

• In case of Optimization problems, scoring is based on solution quality.

In general, 100 points can be earned for each domain. The final score of a system
consists of the sum of scores over all domains, and ties are broken by cumulative
CPU times (timeouts included).
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3.5. Scoring Details
For Decision and Query problems, the score of a solver S on a domain P

featuring N instances is calculated as

S(P ) =
NS ∗ 100

N

where NS is the number of instances solved within the allotted time and memory
limits.

For Optimization problems, solvers are ranked by solution quality. Let M be
the number of participant systems; then, the score of a solver S for an instance I
in a domain P featuring N instances is calculated as

S(P, I) =
MS(I) ∗ 100
M ∗N

where MS(I) is

• 0, if S did neither provide a solution, nor report unsatisfiability, or

• the number of participant systems that did not provide any strictly better
solution than S, where a confirmed optimum solution is considered strictly
better than an unconfirmed one, otherwise.

The score S(P ) of a solver S for domain P consists of the sum of scores S(P, I)
over all N instances I featured by P . Note that, as with Decision and Query
problems, S(P ) can range from 0 to 100.

3.6. Verification of Answers
Each benchmark domain P is equipped with a checker program CP that takes

as input both an instance I and a corresponding witness solution A, and it is such
that CP (A, I) = true in case A is a valid witness for I w.r.t. P .

There are two possible ways to detect incorrect behavior, and subsequently
disqualify system S for P :

• S produces an answer A, but A is not a correct solution for I . This case is
detected by checking the outcome of CP (A, I).
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• S recognizes instance I as unsatisfiable, but I actually has some witness
solution. In this case, it is checked whether another system S ′ produced a
solution A′ for which CP (A

′, I) is true.4

A case of general failure (e.g. “out of memory” errors or other abrupt system
failures) does not imply disqualification for a given benchmark domain.

When dealing with Optimization problems, checkers produce also the cost of
the (last) witness. For one, this value is considered when calculating scores and
assessing answers of systems. For another, given an instance I of an Optimization
problem P , the cost of a best valid witness found by any participant is taken as the
imperfect optimum. In case a system S marks its witness A as optimal for I and
the cost ofA turns out to be different from the imperfect optimum, this is regarded
as incorrect behavior, and S is disqualified for P .

3.7. Solver I/O Interface
Participant systems were required to support the same input-output format as

used in 2013. Input programs are compliant with the ASP-Core-2 standard, and the
expected system output depends on the kind of a problem, i.e. Decision, Query, or
Optimization. Details on the output format can be found in (Krennwallner, 2013).

4. Benchmark Suite

The benchmark domains used in this edition of the ASP Competition largely
coincide with the ones from 2013. While respective ASP-Core-2 encodings were
already available back then, most participants lacked preparation time and could
not submit suitable systems. Hence, half of the systems were in 2013 run on
“equivalent” encoding reformulations in legacy formats, and the Fifth ASP Com-
petition is the first edition relying on common inputs in ASP-Core-2. Nowadays,
the format is for instance supported by the grounder GRINGO-4 (Gebser et al.,
2014b), which thus offers an off-the-shelf front-end for solvers operating at the
propositional level.

As described in Section 3, the benchmarks in the Fifth ASP Competition are
categorized into tracks based on the language features utilized by encodings. Ta-
ble 1 provides an overview that groups benchmark domains in terms of language

4This is a traditional pragmatic choice made in previous ASP Competitions, where hard un-
satisfiable instances have been used as benchmarks even though exhaustive correctness checking
cannot be afforded.
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features in the ASP-Core-2 encodings from 2013. That is, the 2013 encodings for
Labyrinth and Stable Marriage belong to the Basic Decision track (#1), and the
“D” entries in the fourth column indicate that both domains deal with Decision
problems. The Advanced Decision track (#2) includes the sixteen 2013 encod-
ings for the domains in rows from Bottle Filling to Weighted-Sequence Problem.
Among them, the Reachability domain aims at Query answering, as indicated by
the “Q” in the fourth column. The next four rows marked with “O” provide the
domains in the Optimization track (#3). Finally, the last four rows give the do-
mains in the Unrestricted track (#4), where Abstract Dialectical Frameworks is
an Optimization problem and Strategic Companies deals with Query answering.

The second column of Table 1 summarizes the usage of particular language
features, among the ones introduced in Section 2, for the encodings from the
Fourth ASP Competition in 2013.5 While merely normal rules and comparison
operators, considered as basic features, are used for Stable Marriage, the Ba-
sic Decision encoding for Labyrinth induces non-tight ground instantiations with
positive recursion among atoms (Fages, 1994; Erdem and Lifschitz, 2003). Rules
including aggregates like #count, #sum, #max, and #min in their bodies (Faber
et al., 2008) are used, e.g. in the Advanced Decision encoding for Bottle Filling.
Moreover, the Advanced Decision encoding for Graceful Graphs includes choice
rules (Simons et al., 2002), where the superscript “#” indicates non-trivial lower
and/or upper bounds on the number of chosen atoms. Unlike that, the choice rules
for Complex Optimization in the Unrestricted track are unbounded, and thus “#” is
omitted in its row. Proper disjunctions in rule heads (Gelfond and Lifschitz, 1991;
Eiter and Gottlob, 1995) are utilized, e.g. in the 2013 encoding for Graph Colour-
ing. Finally, Abstract Dialectical Frameworks is the only Optimization problem
in the Fifth ASP Competition for which more than one level, i.e. two levels of
significance (Simons et al., 2002; Leone et al., 2006), is used in weak constraints.

In order to furnish an extended benchmark collection for this year, we devised
new encoding variants for all domains but Reachability and Strategic Companies,
whose 2013 encodings are relatively straightforward positive programs subject
to ground queries. In particular, the encoding for Reachability is basic, yet cat-
egorized into the Advanced Decision track in view of queries. One motivation
for providing alternative encodings was to circumvent grounding bottlenecks that

5Compared to the Fourth ASP Competition, we decided to drop the Chemical Classification
domain, whose large encoding (more than 60 MB) imposed primarily a grounding bottleneck. On
the other hand, we reintroduced the application-oriented Partner Units domain (Aschinger et al.,
2011), reusing encodings and instances submitted to the Third ASP Competition in 2011.
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Table 1: Benchmark suite of the Fifth ASP Competition. Language features used in the problem
encodings from 2013 as well as alternative encodings devised for this year’s edition are summa-
rized in the second or third column, respectively, where the abbreviations mean: b(asic) features,
n(on-tight) instances, a(ggregate) atoms, c(hoice) rules, d(isjunctive) rules, l(evels) for weak con-
straints, and n/a if no alternative encoding is provided. Problem encodings in the Unrestricted track
T#4 induce non-HCF programs, while disjunctive rules are not permitted in the Basic Decision
track T#1 or remain HCF in the Advanced Decision track T#2 as well as the Optimization track
T#3. The entries “D”, “O”, and “Q” in the P column indicate Decision, Optimization, or Query
answering tasks, respectively.

Domain 2013 Encoding 2014 Encoding P
Labyrinth b, n b, n D T

#1Stable Marriage b b D

Bottle Filling a a, c D

T
#2

Graceful Graphs c# c# D
Graph Colouring∗ d b D
Hanoi Tower∗ d b D
Incremental Scheduling a, c# a, c# D
Knight Tour with Holes∗ d, n b, n D
Nomystery a, c# c# D
Partner Units a, d, n a, c D
Permutation Pattern Matching c# c D
Qualitative Spatial Reasoning c#, d d D
Reachability b, n n/a Q
Ricochet Robots c# a, c# D
Sokoban a, c# c# D
Solitaire c# a, c# D
Visit-all∗ a, c# b D
Weighted-Sequence Problem c# a, c D

Connected Still Life a, c#, n a, c, n O

T
#3

Crossing Minimization d a, c O
Maximal Clique d b O
Valves Location a, c#, n a, c#, n O

Abstract Dialectical Frameworks a, d, l, n a, d, l, n O

T
#4

Complex Optimization c, d, n c, d, n D
Minimal Diagnosis d, n d, n D
Strategic Companies d, n n/a Q

previously hampered meaningful system evaluations for some domains, and thus
to extend the collection of benchmarks suitable for solver development. More-
over, evaluating participant systems on previous encodings as well as alternative
variants serves to validate competition results and to gain insights regarding the
impact of encodings on system performance, where deviations may help to iden-
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tify more or less successful modeling approaches.
The language features utilized in the new encoding variants are indicated in the

third column of Table 1. Given that the 2014 encodings for the domains marked
with “∗” omit advanced language features of their 2013 counterparts, in addi-
tion to Labyrinth and Stable Marriage, the Basic Decision track on new encod-
ings comprises four more benchmark domains: Graph Colouring, Hanoi Tower,
Knight Tour with Holes, and Visit-all. The restriction to basic features is primar-
ily achieved by rewriting disjunctive or choice rules like p(X) | q(X) ← d(X)
and {p(X) : d(X)} = 1 ← into normal rules such as p(X) ← d(X),not q(X)
and q(X) ← d(X), p(Y ), X 6= Y . Such rewriting has also been applied to the
2013 encoding for Maximal Clique, which however includes weak constraints and
remains in the Optimization track. Further variation is introduced by using the
idea of explanatory frame axioms (Reiter, 1991) for the planning problems Hanoi
Tower and Visit-all. For two 2014 encodings with basic features only, those for
Stable Marriage and Knight Tour with Holes, the size of ground instantiations is
significantly smaller than before, due to the linearization of encoding parts that
previously led to quadratic space consumption.

In more detail, Knight Tour with Holes is a specialized version of the Hamil-
tonian cycle problem, so that rules similar to (3)–(5) can be used for checking
reachability and are included in the alternative encoding variant for this domain.
The encoding from 2013, however, is based on a quadratic representation of the
full transitive closure of reachable nodes in terms of rules like the following:

reach(X, Y ) ← hc(X, Y ) (7)
reach(X,Z) ← hc(X, Y ), reach(Y, Z) (8)

← node(X), node(Y ),not reach(X, Y ) (9)

Given n nodes, where n amounts to a square number determined by the dimension
of a chessboard, a ground instantiation of the subprogram in (7)–(9) is of space
complexity O(n2), while the rules in (3)–(5) yield linear complexity O(n).

Moreover, the 2013 encoding for Stable Marriage includes a space-demanding
integrity constraint of the form

← marry(M,W ′),marry(M ′,W ),M 6=M ′,

m(M,W,P ),m(M,W ′, P ′), P > P ′, (10)
w(W,M,Q), w(W,M ′, Q′), Q ≥ Q′

for expressing that the marriages of a man M and a woman W to partners W ′

or M ′, respectively, are unstable if M has a higher preference for W than for W ′
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and the preference of W for M is at least as high as for M ′. As a consequence, a
ground instantiation lists all forbidden pairs of matches between men and women
explicitly, yielding space complexity O(n4) when n is the number of men as well
as women. To avoid an explicit enumeration of such pairs, the 2014 encoding
reformulates (10) in terms of a subprogram as follows:

keep(m,M,P ) ← marry(M,W ),m(M,W,P ) (11)
keep(w,W,Q− 1) ← marry(M,W ), w(W,M,Q), 1 < Q (12)
keep(G,X,R− 1) ← keep(G,X,R), 1 < R (13)

← m(M,W,P ),not keep(m,M,P ),

w(W,M,Q),not keep(w,W,Q) (14)

The idea of the rules in (11)–(13) is to derive preference values such that a manM
or a woman W does not want to switch to any respective partner. The integrity
constraint in (14) then denies situations in which a man and a woman would like
to switch to each other, which in turn means that their marriages are unstable. Pro-
vided that preference values lie in the range from 1 to n, as sufficient to distinguish
n men as well as women, a ground instantiation of the subprogram in (11)–(14) is
of space complexity O(n2) and thus much more compact than (10).

Regarding the revised Advanced Decision encodings, significant reductions
in grounding size, by about one order of magnitude in comparison to their 2013
counterparts (as indicated in Table 12), were achieved for the domains Incremental
Scheduling, Nomystery, Partner Units, and Weighted-Sequence Problem. These
savings are due to more compact formulations of resource restrictions.

In the Incremental Scheduling domain, jobs must be assigned to devices such
that their executions do not overlap one another. By representing the starting times
of jobs in terms of intervals (Crawford and Baker, 1994), such mutual exclusion
can be expressed conveniently and more concisely than with pairwise compar-
isons of exact starting times. Assuming that instances of share(J1, J2) provide
jobs J1 and J2 to be executed on a common device, the 2013 encoding includes a
subprogram as follows for picking starting times and denying overlaps:

{start(J, T ) : time(T )} = 1 ← job(J) (15)
← start(J1, T ), len(J1, L), start(J2, T2),

share(J1, J2), T ≤ T2, T2 < T + L (16)

Similar to (10), the integrity constraint in (16) lists all forbidden starting times T2
for job J2 relative to a starting time T and the length L of job J1 explicitly. In

16



view of instances with thousand and more time points, such pairwise combinations
incur a significant space overhead. Hence, the 2014 encoding abstracts from exact
starting times and utilizes a subprogram as follows:

geq(J, T ) ← job(J), time(T ),not time(T − 1) (17)
{geq(J, T )} ← job(J), time(T ), time(T − 1) (18)

← geq(J, T ), time(T − 2),not geq(J, T − 1) (19)
start(J, T ) ← geq(J, T ),not geq(J, T + 1) (20)

before(J1, J2) ← job(J1), geq(J2, T ), len(J2, L),not geq(J1, T + L) (21)
← share(J1, J2), before(J1, J2), before(J2, J1) (22)

The rules in (17)–(19) represent an exact starting time T for a job J in terms of
atoms geq(J, t), . . . , geq(J, T ) for some smallest time point t. Instead of a choice
as in (15), an instance of atom start(J, T ) is then derived by the rule in (20).
However, the exact starting time of a job J1 is not needed in (21) to detect that J1
must be executed before a job J2, finishing at time T + L, in view of the absence
of geq(J1, T + L), in case J1 and J2 share a device. That is, the exact starting
times of J1 and J2 are not directly compared to figure out which order is needed
and to deny impossible cases by means of the integrity constraint in (22), so that
a ground instantiation saves space in comparison to (16).

While the 2013 encoding for the planning problem Nomystery, which had been
generated from PDDL (Ghallab et al., 1998; Gerevini et al., 2009), was mostly
kept as is, grounding benefits from the addition of built-in atoms to discard rules
specifying redundant fluents. In particular, the fuel consumption of a truck driving
from a location L1 to L2 at time T is expressed by rules like the following:

fuel(F − C, T ) ← fuel(F, T − 1), drive(L1, L2, T ), cost(L1, L2, C) (23)
← fuel(F, T − 1), drive(L1, L2, T ), cost(L1, L2, C),

F < C (24)

The integrity constraint in (24) denies plans in which F − C in fuel(F − C, T )
would become negative. Instances of the rule in (23) including such atoms are
nevertheless produced by common grounders, as they do not utilize integrity con-
straints to restrict the required substitutions. As a consequence, atoms represent-
ing negative amounts of fuel are first included in a ground instantiation and then
falsified by a solver. In order to avoid such redundancy, the 2014 encoding aug-
ments the rule in (23) with the precondition F ≥ C, so that irrelevant instances
can be directly discarded during grounding.
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The revised encodings for Partner Units and Weighted-Sequence Problem,
both dealing with matching tasks involving budgets, are rewrites. The main prin-
ciple for reducing the grounding size in comparison to their previously submitted
counterparts is the usage of compact aggregates, #count or #sum, respectively,
instead of basic subprograms to encode resource restrictions. In the Partner Units
domain, a cubic integrity constraint of the form

← assign(X, V ), assign(Y, V ), assign(Z, V ), X < Y, Y < Z

has been reformulated as

← value(V ),#count{X : assign(X, V )} > 2

to avoid an explicit enumeration of triples for expressing that at most two elements
can be assigned to a common value V . The Weighted-Sequence Problem, on the
other hand, involves a limitation of accumulated costs for elements denoted by
numbers 1, . . . , n. In the 2013 encoding, the accumulation and limitation of costs
is addressed by a subprogram as follows:

sum(1, C) ← cost(1, C), limit(M), C ≤M

sum(N,C + S) ← cost(N,C), limit(M), sum(N − 1, S), C + S ≤M

ok ← sum(n, S)

← not ok

That is, basic rules describe the formation of total costs along n elements, whose
individual costs depend on an interpretation at hand, and the limit is enforced by
checking the existence of a viable outcome. Given that instances involve cost
limitations to several hundreds and plenty (intermediate) sums are constructible,
the above subprogram is responsible for large ground instantiations. Such a space
blow-up is avoided by using a #sum aggregate in an integrity constraint of the
form

← limit(M),#sum{C,N : cost(N,C)} > M

included in the 2014 encoding for the Weighted-Sequence Problem domain.
New variants of encodings for domains in the Optimization track and the Un-

restricted track are mainly obtained through local modifications and sometimes
simplifications, while maintaining the underlying ideas. The only exception is the
matching problem Crossing Minimization, dealing with the relative positions of
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endpoints connected by edges. Similar to the starting times of jobs in Incremen-
tal Scheduling, the 2014 encoding represents positions in terms of intervals. That
is, for each endpoint of some edge, a predicate geq provides all positions preced-
ing it w.r.t. the placement described by an answer set. This allows for a compact
retrieval of the relative positions of endpoints X and Y by means of a rule

before(X, Y ) ← point(X), geq(Y, P ),not geq(X,P )

of the same pattern as (21), whereas the 2013 encoding relies on a rule of the form

before(X, Y ) ← assign(X,P ), assign(Y, P ′), P < P ′

whose ground instances enumerate pairs of candidate positions explicitly. Beyond
reducing the size of ground instantiations (which is uncritical for Crossing Mini-
mization instances used in the competition), the reformulation aims at an increased
abstraction from exact placements for possibly improving search performance, es-
pecially when conflict-driven learning (Marques-Silva and Sakallah, 1999; Zhang
et al., 2001) is applied.

Finally, note that the instances run in the Fifth ASP Competition have been
randomly selected from the suites submitted in 2013 (or 2011 for Partner Units),
using the concatenation of winning numbers from the EuroMillions lottery of
Tuesday, 22nd April 2014, as random seed. In this way, twenty instances were
picked per domain in order to assess the participant systems both on the encod-
ings from 2013 as well as their new variants.

5. Participants

In this section, we introduce the participants of the Fifth ASP Competition: 16
systems submitted by three teams.

The Aalto team from Aalto University, Finland, submitted nine solvers, work-
ing by means of translations, whose detailed descriptions can be found in (Bo-
manson and Janhunen, 2013; Gebser et al., 2014a; Liu et al., 2012; Nguyen
et al., 2011). Three systems, LP2SAT3+GLUCOSE, LP2SAT3+LINGELING, and
LP2SAT3+PLINGELING-MT, rely on translation to SAT, which includes the nor-
malization of aggregates as well as the encoding of level mappings for non-
tight ground programs. The latter are expressed in terms of bit-vector logic or
acyclicity checking, respectively, supported by the back-end SMT solvers of the
LP2BV2+BOOLECTOR and LP2GRAPH systems. While the aforementioned systems
do not support optimization and participate in the Basic and Advanced Decision
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tracks (#1 and #2) only, LP2MAXSAT+CLASP, LP2MIP2, and LP2MIP2-MT, running
CLASP as a Max-SAT solver or the Mixed Integer Programming solver CPLEX

as back-ends, respectively, compete in the Optimization track (#3) as well. Fi-
nally, LP2NORMAL2+CLASP normalizes aggregates (of up to certain size, follow-
ing the rationale that introduced structural propositions may be useful in conflict-
driven learning) and runs CLASP as back-end ASP solver; LP2NORMAL2+CLASP

participates in all four tracks and thus also in the Unrestricted track (#4). All
systems by the Aalto team utilize GRINGO-4 for grounding, and none of them
supports Query problems (Reachability and Strategic Companies). The systems
LP2SAT3+PLINGELING-MT and LP2MIP2-MT exploit multi-threading and run in the
MP category, while the other, sequential systems participate in the SP category.

The Potassco team from the University of Potsdam, Germany, submitted the
sequential system CLASP (Gebser et al., 2012a), a native ASP solver for (extended)
disjunctive logic programs based on conflict-driven learning, in the SP category
and its multi-threaded version CLASP-MT (Gebser et al., 2012b) in the MP cat-
egory. Both systems utilize GRINGO-4 for grounding and participate in all four
tracks, while they do not support Query problems.

The Wasp team from the University of Calabria, Italy, submitted five incar-
nations of WASP (Alviano et al., 2013b, 2014), a native ASP solver based on
conflict-driven learning, yet extended with techniques specifically designed for
solving disjunctive logic programs, in the SP category. Unlike WASP-1, utilizing a
prototype version of DLV (to cope with the ASP-Core-2 language) for grounding,
WASP-2 relies on GRINGO-4 and further differs from WASP-1 in the implementation
of program simplifications and deterministic inferences. Moreover, WASP-1.5 is a
hybrid system combining WASP-1 and WASP-2, basically switching between them
depending on whether a logic program is non-HCF or subject to a query. While
WASP-1 and WASP-1.5 compete in all domains and tracks, WASP-2 does not partic-
ipate in the Unrestricted track (#4). Additionally, the WASP-WMSU1-ONLY-WEAK

and WASP-WPM1-ONLY-WEAK systems are specifically designed for solving Opti-
mization problems in the Optimization track (#3) plus the Abstract Dialectical
Frameworks domain in the Unrestricted track only.

Table 2 lists the submitted systems (in rows) along with their tracks and cat-
egories (in columns). The Advanced Decision track in column T#2 (other tracks
denoted similarly) is further subdivided to indicate in subcolumn q the ability of
dealing with Query problems, admitted within this as well as the Unrestricted
track T#4. The last column reports whether a system falls into the SP or MP cat-
egory. After a dry-run period, in which teams could test their submissions on the
competition machine, the Wasp team withdrew WASP-WMSU1-ONLY-WEAK (due
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Table 2: Overview of submitted systems along with their tracks and categories

System T#1 T#2 T#3 T#4 SP/MP
q

LP2BV2+BOOLECTOR
√ √

SP
LP2GRAPH

√ √
SP

LP2SAT3+GLUCOSE
√ √

SP
LP2SAT3+LINGELING

√ √
SP

LP2SAT3+PLINGELING-MT
√ √

MP
LP2MAXSAT+CLASP

√ √ √
SP

LP2MIP2
√ √ √

SP
LP2MIP2-MT

√ √ √
MP

LP2NORMAL2+CLASP
√ √ √ √

SP
CLASP

√ √ √ √
SP

CLASP-MT
√ √ √ √

MP
WASP-1

√ √ √ √ √
SP

WASP-1.5
√ √ √ √ √

SP
WASP-2

√ √ √
SP

WASP-WMSU1-ONLY-WEAK
√

(
√

) SP
WASP-WPM1-ONLY-WEAK

√
(
√

) SP

to a bug that appeared after the submission deadline but before the competition
started), so that 15 systems remained in the competition, 12 in the SP and 3 in the
MP category.

Regarding ASP solving approaches, similar to past competition editions, we
can identify two main lines:

• “native” systems, which exploit techniques purposely conceived for dealing
with logic programs under the stable models semantics, and

• “translation-based” systems, which at some stage of the evaluation process
produce an intermediate specification in some different formalism that is
then fed to a corresponding solver.

Native systems include the ones submitted by the Potassco and Wasp teams as well
as LP2NORMAL2+CLASP, while the remaining systems by the Aalto team utilize
translations.

It is also worth mentioning that, in order to assess improvements in system
implementation, we reran a selection of the systems submitted to the Fourth ASP
Competition in 2013. Section 6.2 compares their performance to current versions.
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6. Competition Results

The competition was run on a Debian Linux server (64bit kernel), equipped
with Intel Xeon X5365 processors and 16GB RAM. Time and memory per run
were limited to 600 seconds and 6GB, respectively. Participant systems could use
up to 8 cores in the MP category, while the execution was limited to a single core
in the SP category. The performance of systems was measured using the pyrunlim
tool (Alviano, 2014).

We start by presenting performance results for the systems introduced in Sec-
tion 5 on benchmarks consisting of 2013 problem encodings and twenty randomly
selected instances per domain. This also includes the announcement of winners
in tracks and categories. Then, Section 6.2 compares current systems to previ-
ous versions submitted in 2013 to give an account of the progress. The impact of
modeling on the ASP solving process is assessed in Section 6.3 by comparing the
performance on alternative encoding variants extending the benchmark collection.

6.1. Results of the Fifth ASP Competition
In the following, we report the official results of the Fifth ASP Competition

track by track, and finally announce the category winners. We first present results
for the SP category, and then we turn to the MP category.

Tables 3–6 show the results for each track of the SP category. The tables are
organized as follows: the first column provides systems, the second their scores,
and the third cumulative CPU times. Systems are listed by scores in decreasing
order with ties broken by CPU times, so that table positions correspond to the
ranks of systems. For readability and since the ranks of systems are preserved,
the reported CPU times account only for runs rewarded with positive scores, thus
excluding 600 seconds penalty per failed solving attempt.

The results for Track #1 are given in Table 3. This track includes only two do-
mains, namely Labyrinth and Stable Marriage. The system CLASP performs best
by solving all but three of the forty instances, followed by LP2NORMAL2+CLASP

and WASP-1.5. Another incarnation of WASP, i.e. WASP-2, as well as LP2GRAPH

have the same score as WASP-1.5, but with higher cumulative CPU times.
Table 4 shows the results for Track #2, consisting of sixteen domains (cf. Ta-

ble 1). Here LP2NORMAL2+CLASP is the best performing system, solving two in-
stances more than CLASP, which ranks second, and fifteen instances more than
LP2MAXSAT+CLASP, ranking third (closely followed by LP2SAT3+LINGELING).
Notably, translation-based systems turn out to be competitive in this track, coming
quite close to native solvers.
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Table 3: Overall results for Track #1 (Basic Decision)

System Score CPU Time
CLASP 185 5532.6
LP2NORMAL2+CLASP 165 4742.8
WASP-1.5 160 3918.7
WASP-2 160 3949.0
LP2GRAPH 160 6324.8
LP2MAXSAT+CLASP 140 5871.5
LP2SAT3+GLUCOSE 130 4809.0
WASP-1 110 3755.9
LP2SAT3+LINGELING 95 3661.4
LP2BV2+BOOLECTOR 15 1510.4
LP2MIP2 0 −

Table 4: Overall results for Track #2 (Advanced Decision)

System Score CPU Time
LP2NORMAL2+CLASP 870 13749.4
CLASP 860 14904.0
LP2MAXSAT+CLASP 795 18186.7
LP2SAT3+LINGELING 790 20001.9
WASP-1.5 740 14622.4
LP2GRAPH 735 9593.4
LP2SAT3+GLUCOSE 735 10277.6
LP2BV2+BOOLECTOR 670 15167.8
WASP-2 660 11940.5
WASP-1 605 17511.2
LP2MIP2 140 5662.8

The results for Track #3, including four Optimization problems, are presented
in Table 5, where system scores, determined by relative solution quality (cf. Sec-
tion 3.5), are for readability rounded to nearest integers; this also applies to the
scores in Tables 6–8, 11, and 12. The best performing systems are CLASP, WASP-1,
and WASP-2 as well as WASP-1.5 with identical scores and CPU times, given that
WASP-1.5 always resorts to WASP-2 here. Somewhat unfortunately, the wrapper
scripts of LP2NORMAL2+CLASP, LP2MAXSAT+CLASP, and LP2MIP2 failed to return
their current best witnesses in case of timeouts, so that the scores draw an incom-
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Table 5: Overall results for Track #3 (Optimization)

System Score CPU Time
CLASP 322 21018.7
WASP-1 224 32453.5
WASP-2 186 28802.3
WASP-1.5 186 28802.3
LP2NORMAL2+CLASP 125 4667.0
LP2MAXSAT+CLASP 115 2529.6
LP2MIP2 110 523.8
WASP-WPM1-ONLY-WEAK 46 12000.0

Table 6: Overall results for Track #4 (Unrestricted)

System Score CPU Time
CLASP 285 2307.7
LP2NORMAL2+CLASP 280 3478.5
WASP-1 101 7492.4
WASP-1.5 101 7541.8
WASP-WPM1-ONLY-WEAK 25 451.4

plete picture of the potential optimization capabilities of these systems.
Finally, Table 6 provides the results for Track #4, containing non-HCF in-

stances of the Decision problems Complex Optimization and Minimal Diagno-
sis, the Query problem Strategic Companies, and the Optimization problem Ab-
stract Dialectical Frameworks. Note that WASP-WPM1-ONLY-WEAK competed
only in the latter domain, scored like the Optimization problems in Track #3,
and that no instance of Strategic Companies was solved by any system. In the
three effectively remaining domains, CLASP performs best, closely followed by
LP2NORMAL2+CLASP, which has some edge over WASP-1. Since WASP-1.5 always
resorts to WASP-1 for non-HCF programs, it comes just a short time margin behind.

We are now ready to announce the winners in the SP category, according to
the accumulated results given in Table 7. Thus, the first place goes to CLASP by
the Potassco team, the second place to LP2NORMAL2+CLASP by the Aalto team,
and the third place to WASP-1.5 by the Wasp team. That is, native systems are
ahead of translation-based ones in the category ranking, which is partly explained
by their versatility: while the winner systems competed in all four tracks, the
translation-based systems by the Aalto team could only participate in Tracks #1
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Table 7: Overall results for the SP category

System Score CPU Time
CLASP 1652 43763.0
LP2NORMAL2+CLASP 1440 26637.7
WASP-1.5 1187 54885.2
LP2MAXSAT+CLASP 1050 26587.8
WASP-1 1040 61213.0
WASP-2 1006 44691.8
LP2GRAPH 895 15918.2
LP2SAT3+LINGELING 885 23663.2
LP2SAT3+GLUCOSE 865 15086.6
LP2BV2+BOOLECTOR 685 16678.2
LP2MIP2 250 6186.6
WASP-WPM1-ONLY-WEAK 71 12451.4

Table 8: Overall results for the MP category

System Score CPU time
CLASP-MT 1770 45440.9
LP2SAT3+PLINGELING-MT 995 18563.0
LP2MIP2-MT 315 8757.1

and #2 plus, in case of LP2MAXSAT+CLASP and LP2MIP2, the Optimization prob-
lems in Track #3.

Similarly, Table 8 summarizes performance results for the MP category, in
which CLASP-MT by the Potassco team is followed by LP2SAT3+PLINGELING-MT

and LP2MIP2-MT by the Aalto team. The native system CLASP-MT participated and
achieved first places in all four tracks, LP2SAT3+PLINGELING-MT was more suc-
cessful than LP2MIP2-MT among translation-based systems in Tracks #1 and #2,
while LP2MIP2-MT became second (behind CLASP-MT) in Track #3 dealing with
Optimization problems; detailed results for each domain are given in Table 16.
Albeit CLASP-MT was disqualified in Abstract Dialectical Frameworks due to in-
correct parallel optimization w.r.t. non-HCF programs, all three multi-threaded
systems have a clear edge over their respective sequential counterparts and could
thus take advantage of parallelism to solve more instances.

Having announced the winners, in the following we give more detailed views
of the performance of participant systems, focusing again on the SP category. To
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Figure 2: Cactus plot for Decision problems

begin with, Figure 2 displays a cactus plot for Decision problems (marked with
“D” in Table 1). For each system, the x-axis gives the number of instances solved
within a respective execution time on the y-axis. The performance curves exhibit
three patterns: CLASP and LP2NORMAL2+CLASP, based on the same solver, are
close to each other on the right hand side, and LP2NORMAL2+CLASP turns out to be
quite effective in still solving time-consuming instances; the majority of systems
gathers in the center block led by WASP-1.5, and span over a range of about 60
instances with gradual performance differences; LP2MIP2 remains on the left hand
side of the plot, taking into account that its back-end solver CPLEX is less geared
towards purely propositional settings than other solvers.

The curves in Figure 3 plot the score acquisition of systems for Optimization
problems (marked with “O” in Table 1), where system runs are ordered by the
achieved positive scores, and the sum of scores for the number of instances on
the x-axis is given on the y-axis. In the first place, the plot indicates that CLASP

had more success in producing high-quality witnesses than the four incarnations
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Figure 3: Score acquisition plot for Optimization problems

of WASP whose curves are underneath. As mentioned above, due to malfunc-
tioning wrapper scripts, the systems LP2NORMAL2+CLASP, LP2MAXSAT+CLASP,
and LP2MIP2 failed to return their current best witnesses in case of timeouts, but
produced confirmed optimum solutions only. Since the resulting curves are in-
distinguishable, LP2MAXSAT+CLASP and LP2MIP2, which solved fewer instances
and are thus dominated by LP2NORMAL2+CLASP, are not displayed in Figure 3.
While LP2NORMAL2+CLASP returned optimal witnesses only, the other five sys-
tems gained (positive) scores in considerably more runs, and CLASP earns roughly
double the sum of scores using the same search back-end as LP2NORMAL2+CLASP.

Table 9 gives an impression of the memory consumption of participant sys-
tems by providing the minimum, 25th percentile, median, 75th percentile, and
maximum amounts of memory used in runs rewarded with positive scores along
with respective average values and standard deviations. Apart from WASP-WPM1-
ONLY-WEAK, which dealt with Optimization problems in five domains only, the
median and average values indicate that CLASP and LP2GRAPH, whose support for

27



Table 9: Memory consumption (MB)

System min 25% 50% 75% max avg stdev
CLASP <1.0 19.1 38.1 203.5 4039.6 257.2 539.4
LP2BV2+BOOLECTOR 12.9 90.7 157.6 559.9 2701.3 484.9 656.6
LP2GRAPH 5.5 33.5 82.2 202.6 502.9 131.5 122.6
LP2MAXSAT+CLASP <1.0 30.0 59.9 367.1 5998.2 584.8 1282.7
LP2MIP2 15.5 29.7 117.3 397.1 3823.2 329.3 579.4
LP2NORMAL2+CLASP <1.0 28.9 77.0 326.1 5770.5 410.6 915.2
LP2SAT3+GLUCOSE 6.2 33.7 92.1 391.1 6009.0 586.3 1248.6
LP2SAT3+LINGELING 4.4 22.1 59.1 306.6 5728.1 359.2 711.0
WASP-1 <1.0 35.6 146.9 619.6 5625.1 835.2 1407.9
WASP-1.5 <1.0 84.4 364.3 1235.3 5538.7 1027.4 1426.6
WASP-2 <1.0 90.9 336.7 1205.2 5185.6 840.5 1202.0
WASP-WPM1-ONLY-WEAK <1.0 15.9 28.9 72.8 474.9 62.9 90.2
CLASP-MT <1.0 57.9 163.8 616.0 5156.2 509.8 825.9
LP2MIP2-MT 16.4 46.2 71.7 216.1 1153.3 159.7 210.9
LP2SAT3+PLINGELING-MT <1.0 23.4 95.1 541.8 5979.2 604.8 1137.6

acyclicity checking admits a compact representation of non-tight programs, con-
sume the least memory among systems in the SP category. The memory overhead
incurred by the normalization of aggregates and/or translation to the formalisms
of other back-end solvers can be observed in the second and fourth to eighth row.
The three incarnations of WASP below consume relatively much memory on some
specific instances (as witnessed by the high standard deviations), while still being
comparable with other systems in terms of maximum allocation. Also note that the
selection process implemented in WASP-1.5 requires more memory than WASP-1
and WASP-2, which is because the input instance is provided as unique stream that
is buffered to allow for an efficient solver selection. Regarding the three systems
in the MP category, CLASP-MT and LP2SAT3+PLINGELING-MT, which are based on
conflict-driven learning, demand significantly more memory than their sequen-
tial counterparts. Unlike that, the multi-threaded version LP2MIP2-MT of LP2MIP2
scores on more instances, while consuming less memory on average.

Finally, Tables 14–16 at the end of this paper report detailed results per solver
and domain. Notably, the higher score of LP2NORMAL2+CLASP than CLASP in
Track #2 is due to the domains Hanoi Tower and Visit-all. Since their encodings
do not involve substantial aggregates, we attribute these performance differences
to the usage of different search parameters rather than normalization.
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6.2. Comparison to Previous Competition Edition
In the following, we compare the performance of the most successful 2013

submission by each team, rerun under the same conditions as this year’s entries in
order to obtain comparable results, to “updated” versions in the Fifth ASP Compe-
tition. We begin with WASP-1 by the Wasp team, which resembles a corresponding
system submitted in 2013, and then proceed to systems by the Aalto and Potassco
teams.

Wasp team. The system WASP-1 is a bug-fix version of the 2013 submission
DLV+WASP (Alviano et al., 2013b). Hence, we concentrate on the comparison be-
tween WASP-1, its successor WASP-2, and the hybrid system WASP-1.5. Regarding
the Decision problems in Tracks #1 and #2, WASP-2 solves 10 or 27, respectively,
more instances than WASP-1, and 16 instances of the Query problem Reachability
are solved likewise by WASP-1 and WASP-1.5. The only domain in which WASP-1
solves (three) more instances of a Decision problem than WASP-1.5 and WASP-2
is Qualitative Spatial Reasoning. This outlier can be explained by the naive han-
dling of disjunction implemented in WASP-2. Indeed, the encoding for Qualitative
Spatial Reasoning involves long disjunctions, so that the straightforward applica-
tion of shifting (Ben-Eliyahu and Dechter, 1994) causes a space blow-up resulting
in five memory outs. Unlike that, WASP-1 handles disjunctions by means of ded-
icated data structures. In Track #3 dealing with Optimization problems, WASP-1
still has advantages over the more recent WASP-2 system. However, when disre-
garding Track #4 in which WASP-2 did not participate, it remains ahead of WASP-1
by a score difference of 67. This gap increases to 147 points when considering
WASP-1.5, which resorts to WASP-1 for Query answering in the Reachability do-
main and to deal with non-HCF programs in Track #4. Notably, the overhead of
switching between WASP-1 and WASP-2 stays negligible, as WASP-1.5 achieves the
same score as the system it picks for each domain. Hence, by utilizing WASP-2 in
domains where it is applicable, WASP-1.5 significantly improves on WASP-1.

Aalto team. The system LP2SAT (Janhunen and Niemelä, 2011), relying on eager
translation of logic programs to SAT and using the PRECOSAT solver as search
back-end, has been the best performing 2013 submission by the Aalto team.
Among this year’s entries, LP2SAT3+GLUCOSE and LP2SAT3+LINGELING are based
on the same approach. In order to use common inputs, we compare the previous
and this year’s systems on Basic Decision encodings only, taking into account that
LP2SAT processes a legacy format that differs from ASP-Core-2 on advanced con-
structs such as aggregates. Given that the Basic Decision track on 2013 encodings
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Table 10: Comparison between the 2013 submission LP2SAT, LP2SAT3+GLUCOSE, and
LP2SAT3+LINGELING

LP2SAT LP2SAT3+GLUCOSE LP2SAT3+LINGELING
Domain Score CPU Time Score CPU Time Score CPU Time
Labyrinth 0 − 35 1668.9 30 1600.7
Stable Marriage 5 170.9 95 3140.1 65 2060.7
Graph Colouring 60 4334.2 80 2597.5 90 2306.2
Hanoi Tower 95 96.8 100 47.9 100 105.7
Knight Tour with Holes 0 − 0 − 0 −
Labyrinth 0 − 40 1586.8 25 1783.0
Stable Marriage 95 508.3 100 442.9 100 452.9
Visit-all 95 3165.7 60 1296.6 65 570.2

merely includes two domains, we here also consider the six alternative encodings
with basic features only, and Table 10 shows respective scores and cumulative
CPU times for solved instances. Regardless of which encoding is used, LP2SAT,
LP2SAT3+GLUCOSE, and LP2SAT3+LINGELING have difficulties with instances of
Labyrinth and Knight Tour with Holes, since translation to SAT is particularly in-
tricate for the non-tight programs in these domains. However, LP2SAT3+GLUCOSE

and LP2SAT3+LINGELING improve on LP2SAT by solving from 5 to 8 instances
of Labyrinth, depending on which encoding is used, whereas LP2SAT times out
on all non-tight instances. Another gap is observed on the 2013 encoding for
Stable Marriage, while the differences on 2014 encodings are smaller. Neverthe-
less, LP2SAT3+GLUCOSE and LP2SAT3+LINGELING have some advantages in Graph
Colouring, but LP2SAT solves more instances of Visit-all. In general, the perfor-
mance differences between LP2SAT, on the one hand, and LP2SAT3+GLUCOSE as
well as LP2SAT3+LINGELING, on the other hand, are owed to re-engineered trans-
lation tools and the use of other SAT solvers as search back-ends. Considering the
overall picture, the solving approach based on translation to SAT has been clearly
advanced since the Fourth ASP Competition in 2013.

Potassco team. The prototype system CLASPD2 (Gebser et al., 2013) has been the
overall winner in the Fourth ASP Competition and evolved into CLASP as sub-
mitted this year. Table 11 contrasts both systems on 2013 encodings for all but
the domains aiming at Query answering (Reachability and Strategic Companies),
where Decision problems are addressed in the upper part and Optimization prob-
lems in the lower part. With either kind of problem, the relative performance of
CLASPD2 and CLASP is quite mixed. That is, CLASPD2 solves two or three, respec-
tively, more instances than CLASP in Hanoi Tower, Nomystery, and Sokoban, and
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Table 11: Comparison between the 2013 submission CLASPD2 and CLASP

CLASPD2 CLASP
Domain Score CPU Time Score CPU Time
Bottle Filling 100 124.3 100 170.4
Complex Optimization 80 527.4 85 553.6
Graceful Graphs 25 756.8 40 756.4
Graph Colouring 40 769.9 45 834.1
Hanoi Tower 100 1527.4 85 1498.3
Incremental Scheduling 0 − 0 −
Knight Tour with Holes 0 − 0 −
Labyrinth 80 1672.6 90 3396.0
Minimal Diagnosis 100 286.3 100 199.1
Nomystery 50 985.2 40 621.8
Partner Units 25 506.1 20 290.6
Permutation Pattern Matching 70 1247.8 70 1556.6
Qualitative Spatial Reasoning 100 1276.8 100 2124.4
Ricochet Robots 100 933.6 100 2464.4
Sokoban 45 855.9 35 1076.9
Solitaire 75 669.2 85 112.6
Stable Marriage 95 1828.8 95 2136.6
Visit-all 60 570.6 55 1846.2
Weighted-Sequence Problem 75 938.1 85 1551.3
Abstract Dialectical Frameworks 100 1115.3 100 1555.0
Connected Still Life 82 10200.7 72 9613.3
Crossing Minimization 75 9028.7 96 4466.4
Maximal Clique 60 10708.3 100 938.3
Valves Location 97 10481.3 54 6000.7

it also achieves higher scores for the Optimization problems Connected Still Life
and Valves Location. Opposite behavior is in turn observed in Graceful Graphs,
Labyrinth, Solitaire, and Weighted-Sequence Problem as well as Crossing Min-
imization and Maximal Clique. In total, the accumulated results amount to two
more solved instances of Decision problems and a score difference of 8 for Op-
timization problems, both in favor of CLASP. Albeit CLASP is equipped with a
refined implementation and fine-tuned search parameters, the 2013 submission
CLASPD2 thus remains close to its successor on the competition benchmarks.

6.3. Impact of Modeling
We further investigate revised encodings furnishing an alternative benchmark

collection. To this end, Table 12 provides grounding parameters, obtained by
running GRINGO-4 under the same time and memory limits as participant systems,
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Table 12: Comparison between 2013 and alternative encodings. For each domain where an alternative encoding is provided, the upper row
gives results for the respective 2013 encoding, and the lower row refers to its novel variant. The columns before system scores report the
number of ground instantiations obtainable with GRINGO-4 within time and memory limits along with the average CPU time, memory
consumption, and output size of GRINGO-4.
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Abstract Dialectical Frameworks 20 2.3 10.3 289553.0 100 − − − − 80 − − 36 36 −
20 2.3 10.1 281718.0 94 − − − − 75 − − 36 36 −

Bottle Filling 20 3.7 136.8 20295921.8 100 55 5 50 0 100 5 55 100 100 100
20 3.2 175.4 16622528.8 100 55 5 55 0 100 5 30 95 100 100

Complex Optimization 20 3.9 132.7 11558131.2 85 − − − − 100 − − 0 0 −
20 3.9 132.8 11531030.5 80 − − − − 100 − − 0 0 −

Connected Still Life 20 0.0 0.0 384243.7 72 − − 15 10 20 − − 96 86 86
20 0.0 0.0 356416.0 92 − − 15 5 20 − − 19 53 53

Crossing Minimization 20 0.0 0.0 312055.4 96 − − 30 0 70 − − 59 41 41
20 0.0 0.0 67974.5 99 − − 35 85 55 − − 60 57 57

Graceful Graphs 20 0.1 2.9 2354707.8 40 35 40 50 0 40 40 45 5 20 20
20 0.0 1.7 829697.1 35 15 25 25 0 35 25 25 0 20 20

Graph Colouring 20 0.0 0.0 202227.8 45 25 45 50 30 45 45 50 25 35 35
20 0.0 0.0 182446.8 85 65 80 85 15 85 80 90 25 60 60

Hanoi Tower 20 0.1 6.3 2627765.1 85 85 100 100 0 100 100 85 40 70 70
20 0.0 0.8 1249704.0 100 100 100 100 0 100 100 100 75 100 100

Incremental Scheduling 9 141.3 4189.7 1495237500.0 0 0 0 0 0 0 0 0 0 0 0
15 11.6 823.8 118731077.4 65 20 25 25 20 65 25 25 35 65 65

Knight Tour with Holes 15 229.8 2349.4 8014717407.0 0 0 0 0 0 0 0 0 0 0 0
20 6.1 24.3 67876423.6 5 0 5 0 90 10 0 0 0 5 5

Labyrinth 20 0.2 11.0 3771757.2 90 15 65 40 0 70 35 30 45 60 60
20 0.2 11.0 3804473.9 90 15 70 25 0 75 40 25 40 60 60

Maximal Clique 20 0.4 13.3 2582856.1 100 − − 65 100 15 − − 69 55 55
20 0.4 10.5 1128405.5 100 − − 65 100 20 − − 69 54 54

Minimal Diagnosis 20 3.0 105.6 21853053.6 100 − − − − 100 − − 65 65 −
20 1.6 41.7 13523566.9 100 − − − − 100 − − 100 100 −

Nomystery 20 17.1 77.6 287019297.5 40 45 45 45 5 40 45 40 25 35 35
20 0.8 19.6 17639442.9 35 45 40 50 15 45 40 50 35 40 40

Partner Units 20 63.4 7.8 1359146887.0 20 0 15 20 0 20 15 15 5 15 15
20 0.2 9.6 182766999.0 65 20 20 40 0 45 20 30 15 60 60

Permutation Pattern Matching 19 78.9 10.0 3224788374.0 70 40 65 65 35 65 65 65 55 65 65
20 71.6 11.3 1839055915.0 75 15 75 75 40 75 70 75 70 75 75

Qualitative Spatial Reasoning 20 2.9 135.3 44982026.1 100 0 50 50 10 100 50 50 90 75 75
20 2.9 134.1 48253514.6 100 0 50 50 20 100 50 50 95 70 70

Ricochet Robots 20 0.0 0.3 12098392.7 100 100 100 100 0 100 100 100 30 35 35
20 0.0 0.7 845186.5 100 100 100 95 0 100 100 100 0 35 35

Sokoban 20 3.9 94.8 33764103.7 35 35 30 35 0 30 30 25 5 30 30
20 3.9 94.8 45082889.3 35 35 30 35 0 30 30 25 5 30 30

Solitaire 20 0.0 0.0 2265558.1 85 80 80 80 25 80 80 85 75 85 85
20 0.0 0.0 286293.1 95 95 95 95 25 100 95 95 95 95 95

Stable Marriage 20 15.7 8.9 293695544.8 95 0 95 100 0 95 95 65 65 100 100
20 1.1 8.2 41459902.7 100 100 100 100 100 100 100 100 100 100 100

Valves Location 20 8.5 531.5 66926254.4 54 − − 5 0 20 − − − 5 5
20 8.1 433.0 65056582.2 97 − − 5 5 24 − − 0 10 10

Visit-all 20 0.1 4.6 1126664.0 55 100 65 60 35 65 65 90 25 30 30
20 0.4 3.7 8585873.7 70 85 60 60 85 65 60 65 30 60 60

Weighted-Sequence Problem 20 0.6 5.3 10495461.3 85 70 95 90 0 85 95 85 45 65 65
20 0.0 0.0 760871.8 100 100 100 100 75 100 100 100 70 100 100
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along with the scores of systems in the SP category (except for WASP-WPM1-ONLY-
WEAK, which did not participate in the majority of domains) on previous and novel
encoding variants, given in the upper or lower row, respectively, per domain.

As described in Section 4, one objective of revising previous encodings was to
reduce grounding bottlenecks that affected all participant systems and hampered
a meaningful comparison. Crucial size reductions were achieved with the new en-
codings for Incremental Scheduling, Knight Tour with Holes, Nomystery, Partner
Units, Stable Marriage, and Weighted-Sequence Problem. In particular, no sys-
tem solved any instance of Incremental Scheduling or Knight Tour with Holes on
their 2013 encodings, rendering system comparisons void in these cases. Unlike
that, some systems earn scores on the corresponding revised encodings that aim at
linear rather than quadratic space consumption w.r.t. instance data. Interestingly,
LP2MIP2 could benefit most from the revised encoding for Knight Tour with Holes
and solved 18 out of 20 highly combinatorial instances, even though its transla-
tion to MIP is less effective for other domains; e.g. LP2MIP2 solved no instance of
Hanoi Tower or Ricochet Robots regardless of the encoding used. With the excep-
tion of Nomystery, where system scores remain roughly at the same level with the
previous and the new encoding variant, savings in grounding generally paid off.

The second aspect of investigating alternatives was to gain some impression of
the impact of encodings on search performance. In this regard, the revised encod-
ings turn out to boost several systems in the domains Crossing Minimization (cf.
timeouts in the detailed results in Tables 14–19), Graph Colouring, Hanoi Tower,
Minimal Diagnosis, and Solitaire. However, the opposite effect also applies in
some cases, as observed on the scores of WASP variants in the Connected Still Life
domain and declines for all systems in Graceful Graphs. Furthermore, different
systems may react non-uniformly like in Visit-all, where LP2MIP2 and the WASP

variants perform better on the revised encoding, while LP2BV2+BOOLECTOR and
LP2SAT3+LINGELING behave the other way round.

Apart from objective measures such as grounding size, the effect of encoding
variants on system performance is difficult to predict, and different options shed
some light on whether benchmarks are inherently hard or influenced by modeling.
Arguably, more challenging instances would be desirable for domains in which
some encoding variant enables a participant system to complete all its runs in
time, as it happens in half of the domains listed in Table 12.

The impact of modeling on performance is summarized in Figure 4, which
contrasts overall scores, displayed in decreasing order, of systems in the SP cate-
gory on alternative encoding variants with corresponding scores on 2013 encod-
ings (as listed in Table 7). Apart from the prototype system WASP-WPM1-ONLY-
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Figure 4: Comparison of system scores achieved on new encoding variants

WEAK, which failed on the new encodings for Optimization problems, all systems
benefit more or less substantially from rewrites. However, the first three places
remain the same, and gradual differences to the official ranking in the SP category
concern systems whose performance is close on both previous and novel encoding
variants. That is, relative performance is largely unaffected by modeling aspects,
but primarily owed to solving technology and versatility, while encoding improve-
ments can be highly effective in general.

More detailed results of running systems in the SP category on alternative
encodings can be found in Tables 17–19 at the end of this paper.

7. Comparison to Previous ASP and Other Competitions

In this section, we compare the format of the Fifth ASP Competition with
past editions, discussing the differences with respect to several aspects, such as
tracks or scoring systems. Furthermore, it is worth noting that ASP has a close
relationship to other modeling paradigms and languages, such as SAT, SMT, QBF,
and more, all of which aim at solving demanding AI problems. In the following,
we locate this edition of the ASP Competition in the spectrum of related events.
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Figure 5: Evolution of the ASP Competition series (numbers denote participant counts in corre-
sponding tracks)

7.1. The ASP Competition Series
In September 2002, participants to the Dagstuhl Seminar on Nonmonotonic

Reasoning, Answer Set Programming and Constraints (Brewka et al., 2002)
agreed that standardization was a key issue for the development of ASP; hence,
they decided to establish an infrastructure for benchmarking ASP solvers, as al-
ready in use in the neighboring fields of SAT and Constraint Programming. A first
informal competition took place during the workshop, featuring the five systems
DLV (Leone et al., 2006), SMODELS (Simons et al., 2002), ASSAT (Lin and Zhao,
2004), CMODELS (Giunchiglia et al., 2006), and ASPPS (East and Truszczyński,
2001) from TU Vienna/Univ. of Calabria, Helsinki UT, Hong Kong UST, Univ. of
Texas at Austin, and Univ. of Kentucky. Since then, and after a second informal
edition in 2005, the ASP Competition series has been established as a reference
event for the community. It takes usually place biennially, and results are officially
announced at the International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR).

Interestingly, the competition format was not definitely established from the
beginning; rather, as research went on and the state of the art was pushed forward,
it has been adjusted in order to foster advancements and grant benefits to the
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community. However, it is worth noting that language standardization has always
been a crucial issue. A progress schema of the ASP Competition series is shown
in Figure 5. For further details, we refer the reader to (Calimeri et al., 2012).

In the 2011 and 2013 editions, the format consisted of two different tracks,
adopting the distinction between a Model&Solve and a System track. Both tracks
featured a selected suite of domains, chosen by means of an open Call for Prob-
lems stage. This edition omitted a benchmark submission phase and relied on
available encodings and instances (mainly from 2013) in view of the short prepa-
ration period.

The System track was essentially similar to the format of the current edition.
It was conceived with the aim of fostering language standardization, and let the
participants compete on given encodings under fixed conditions, e.g. excluding
custom problem encodings and domain-tailored evaluation strategies. However,
in previous editions, the track was subdivided on the basis of problem complex-
ity, while this edition makes a more fine-grained distinction based on language
features; the rationale for this change has been discussed in Section 3.

Unlike the System track, the Model&Solve track in previous editions was in-
stead left open to any (bundle of) solver systems loosely based on a declarative
specification language: no constraints were imposed on encodings apart from the
requirement that the language had to be declarative. The aims were to encourage
the development of new expressive declarative constructs and/or new modeling
paradigms, to foster the exchange of ideas between communities in close relation-
ship to ASP, and to stimulate the development of new ad-hoc solving methods.
Model&Solve track competitors received textual problem descriptions from a va-
riety of domains and had several months to produce problem encodings together
with one or multiple working systems of choice, which could be configured on a
per domain basis.

It is worth discussing why the Model&Solve track has been detached from
the system competition, and turned into an informal on-site event, summarized
at (Calimeri et al., 2014b), in the spirit of the Prolog Programming Contest. Al-
though its goals were ambitious and definitely relevant, it requires a substantial
amount of work to organize and, even more, participate in such a track. First of
all, fine-tuning a system, or a bundle of systems, and an encoding for an individual
domain is a hard task; this, in spite of the fact that contestants have always been
encouraged to exchange their solutions freely, tends to give larger teams a clear
advantage over others. In addition, the participation from neighboring communi-
ties was rather limited, probably due to corresponding genuine competitions and
the non-negligible effort of participating. Compared to this, it is easier to com-
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pete in an event similar to the System track by submitting a solver system with
appropriate support for the respective input language.

Eventually, the scoring scheme has been significantly changed for the sake of
simplicity. Indeed, the scoring has been refined throughout editions. At the begin-
ning, it was mainly based on a weighted sum of the number of instances solved
within given time and memory limits; in the 2011 and 2013 editions, the scoring
scheme has been extended by awarding additional points to systems performing
well in terms of elapsed time. For a Decision or Query problem P , each system
gained a score S(P ) = Ssolve(P ) +Stime(P ), where Ssolve and Stime ranged from
0 to 50 each: while Ssolve was linearly dependent on the number of solved in-
stances, Stime involved a logarithmic dependence on participants’ running times,
thus rendering time differences at a common order of magnitude less significant.
For Optimization problems, the Ssolve part was replaced with a scoring formula
taking objective values associated with solutions into account, where distances
from an (imperfect) optimum were penalized exponentially.

We performed a number of ex-post analyses on the results of the 2011 and
2013 editions, experimenting with different scoring schemes. At first, we found
that time quota did not make much difference and accordingly use Ssolve(P ) only
(simply denoted S(P ) in Section 3.5), which as before linearly reflects the number
of solved instances of a Decision or Query problem P . Furthermore, we pondered
that absolute objective values are not adequate for scoring solutions for Optimiza-
tion problems, given that they depend heavily on domains and are susceptible to
perturbations; rather than that, relative rankings can draw a more reliable picture.
Hence, for an Optimization problem P , we determine Ssolve(P ) by accumulating
ranks by solution quality for instances of P . Interestingly, if employed in the latest
editions, the winners would have been the same. The new scoring scheme is also
closer to those of competitions in neighboring fields, which are considered next.

7.2. Related Competitions
In the following, we briefly overview other competitions in neighboring fields

and relate them to the ASP Competition series. Note that we do not aim at con-
trasting formalisms or respective systems, but are rather interested in the similari-
ties and differences of competition setups. Comparisons of systems from different
fields can be found, e.g. in (Aschinger et al., 2011; Calimeri et al., 2014c; Dovier
et al., 2007; Mancini et al., 2008).

We start by listing related competitions (in no particular order) along with
acronyms, years of latest editions, and recent references, if available:
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• IJCAR ATP System Competition – CASC 2014 (CASC, 2014; Sutcliffe,
2014)
• Confluence Competition – CoCo 2014 (CoCo, 2014)
• Configurable SAT Solver Challenge – CSSC 2014 (CSSC, 2014)
• Hardware Model Checking Competition – HWMCC 2014 (HWMCC,

2014)
• OWL Reasoner Evaluation – ORE 2014 (ORE, 2014; Bail et al., 2013)
• QBF Gallery – QBF 2014 (QBF, 2014)
• SAT Competition – SAT-COMP 2014 (SAT, 2014; Järvisalo et al., 2012)
• Satisfiability Modulo Theories Solver Competition – SMT-COMP 2014

(SMT, 2014; Barrett et al., 2013)
• Competition on Software Verification – SV-COMP 2014 (SV-COMP, 2014;

Beyer, 2014)
• Syntax-Guided Synthesis Competition – SyGuS-COMP 2014 (SyGuS-

COMP, 2014)
• Synthesis Competition – SYNTCOMP 2014 (SYNTCOMP, 2014)
• Termination Competition – termCOMP 2014 (TermCOMP, 2014)
• Max-SAT Evaluation – Max-SAT 2014 (Max-SAT, 2014)
• Mancoosi International Solver Competition – MISC 2012 (MISC, 2012)
• Pseudo-Boolean Competition – PB 2012 (PB, 2012; Järvisalo et al., 2012)
• International CSP Solver Competition – CSC 2009 (CSC, 2009);

MiniZinc Challenge 2014 (MiniZinc, 2014; Stuckey et al., 2014)
• International Planning Competition – IPC 2014 (IPC, 2014; Coles et al.,

2012)
A quick glance at competition characteristics is given in Table 13, displaying

whether a standard input format, optimization tasks, non-ground problem descrip-
tions, and industrial/real-world domains are featured; the last column reports the
number of participant systems in latest editions. Notably, almost all competitions
rely on a standard language, with the exception of SV-COMP in view of its applied
nature. Considerable efforts in dealing with industrial/real-world problems are ap-
parent too. The latter frequently demand for optimization capabilities, central in
one third of the competitions, as well as non-ground representations, featured by
half of the competitions. Both of these concepts are jointly addressed in the CSC,
IPC, and ASP Competition series.

Almost all competitions include tracks, also called divisions or categories. The
way tracks are defined depends on the competition at hand, but three main crite-
ria can be identified: language features of inputs, the kind of problem domains,
and reasoning tasks to be accomplished. For instance, SAT-COMP distinguishes
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Table 13: Overview of related competitions

Comp Std Opt Non-ground Industrial Participants

CASC 2014 yes no yes no 31 (+3 demo)

CoCo 2014 yes no yes no 7

CSSC 2014 yes no no yes 22

HWMCC 2014 yes no no yes 34

ORE 2014 yes no yes yes 11

QBF 2014 yes no no yes 16

SAT-COMP 2014 yes no no yes 227

SMT-COMP 2014 yes no yes yes 21

SV-COMP 2014 no no yes yes 15

SyGuS-COMP 2014 yes no yes no 5

SYNTCOMP 2014 yes no no yes 22

termCOMP 2014 yes no no yes 9

Max-SAT 2014 yes yes no yes 46

MISC 2012 yes yes no yes 4

PB 2012 yes yes no yes 18

CSC 2009 yes yes yes yes 14

IPC 2014 yes yes yes yes 87

ASPCOMP 2014 yes yes yes yes 16

application, combinatorial, and random instances, and the kind of benchmarks
has a major impact on participant and winner systems. Interestingly, none of the
considered competitions conceives tracks on an intentional complexity basis.

For scoring, almost all competitions rely on the number of solved instances,
sometimes with particularities like bonus/malus points in case of errors, and ties
are usually broken by taking resources spent into account. For instance, SMT-
COMP adopts a rather complex scheme, based on correctness, number of queries
answered, and running times. In case of Optimization problems, the quality of
solutions matters, such as plan quality in IPC. The simplified scoring scheme
adopted in this edition of the ASP Competition is in line with related competi-
tions and pursues similar objectives. In particular, the relative ranking of systems
by solution quality has been inspired by MISC, which deals with optimization in
the context of software package management.
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Many communities (if not all) maintain benchmark repositories, often well-
known, well-studied, and classified in terms of dimensions like language features
or hardness. Even though the Asparagus platform (Asparagus, 2009) gathers a
broad collection of benchmarks for ASP systems, it however appears less central
to the ASP community than corresponding initiatives in neighboring fields. More-
over, almost all competitions make use of benchmarks from previous editions and
are additionally accompanied by a call for benchmark submissions (which had to
be omitted in this edition of the ASP Competition). Notably, benchmarks submit-
ted to SV-COMP are reviewed and possibly revised by organizers and participants
in order to improve the benchmark collection; our encoding variants partly go into
that direction as well. A subset of the available instances to be fed to participant
systems is then typically determined randomly, sometimes applying eligibility cri-
teria, e.g. based on estimated hardness.

Finally, we would like to acknowledge the MINISAT (Eén and Sörensson, 2003)
“hack” track, featured by SAT-COMP since its 2009 edition. This track promotes
ideas that can be integrated into a common base SAT solver with relatively modest
development effort. Such a possibility lowers the threshold for entering the com-
petition, especially for students or small research teams, and is one among several
factors for the comparably high participation in SAT-COMP. If a corresponding
baseline were available for ASP solving as well, it might encourage more teams
to participate in future editions of the ASP Competition.

8. Conclusions

The Fifth ASP Competition has been jointly organized by the University of
Calabria (Italy), Aalto University (Finland), and the University of Genova (Italy),
affiliated with the 30th International Conference on Logic Programming (ICLP
2014). The main goals were to evaluate the progress of the state of the art in ASP
solving and to further push the adoption of the standard language ASP-Core-2.
This paper contributes a detailed account of the competition design, participants,
and results, and locates the ASP Competition in the spectrum of related events.

The results were orally presented at ICLP 2014 in Vienna, part of the Feder-
ated Logic Conference at the Vienna Summer of Logic, where the winners were
announced and awarded in a FLoC Olympic Games ceremony on Monday, 21st
July 2014. The system CLASP is the overall winner in the SP category, and its
multi-threaded version CLASP-MT won the MP category. Different from previous
competition editions, the Model&Solve track was an informal event held on-site:
the team consisting of Mario Alviano (University of Calabria), Carmine Dodaro
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(University of Calabria), and Wolfgang Faber (University of Huddersfield) won
the first place in this newly established ASP Modeling Competition.

Organizing and running the Fifth ASP Competition required a significant ef-
fort, and during this journey we faced several issues. It was impossible to settle
all of them in this edition of the ASP Competition, and in the following we share
central aspects deserving further consideration in the future.

Benchmark collection. It would be a service to the community to create a common
repository of domains and instances (say, ASP-LIB), similar to what is done in
neighboring fields, e.g. SAT-LIB (SAT-LIB, 2014), SMT-LIB (SMT-LIB, 2014),
and QBF-LIB (QBF-LIB, 2014). Current benchmark sources include Aspara-
gus and competition homepages, but none of them provides a comprehensive and
maintained benchmark collection. The lack of a standard language had been an
obstacle for the general acceptance of a repository in the past, which is now abol-
ished by the ASP-Core-2 standard.

Domain and instance selection. There is a clear need for more domains stemming
from real-world applications. Similarly, the current benchmarks do not compre-
hensively cover ASP modeling concepts; e.g. only two out of seventeen Decision
problems in Tracks #1 and #2 take significant advantage of non-tightness (cf. Ta-
ble 1). The next call for benchmarks should, in our opinion, explicitly target real-
world domains as well as modeling concepts. We also feel that the classification
by language features was useful in the analysis of competition results and should
be maintained. Regarding instance selection, generators for random or crafted
instances should always be made publicly available for reference and reusability,
while methods to focus on “meaningful” instances only, e.g. (Hoos et al., 2013),
should be taken into account as well.

Track design. ASP Competitions are inherently multifaceted and thus complex
events, but the need to compare systems and evaluate the progress in the field is
of course still central. In this regard, tracks for non-ground (i.e. as of now) and
ground (via a common format) inputs could be considered. Moreover, additional
tasks such as cautious and brave reasoning could give rise to new tracks.

Scoring scheme. The traditional scoring scheme of ASP Competitions accumu-
lates the results of multiple tracks to determine an overall winner per category.
Although track winners are also awarded separately, newcomer and specialized
systems that cannot compete in all tracks are penalized by global rankings, which
may discourage their participation. An option to be considered in the future is
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whether to keep tracks separate, in analogy to SAT Competitions where first places
are awarded in each track, while there is no overall competition winner.

Output format. The diversity of ASP Competitions, featuring Decision, Opti-
mization, and Query answering tasks, led to several output formats that solvers
must comply with (Krennwallner, 2013). Multiple formats result in a significant
burden to both organizers and developers. We thus encourage future simplifica-
tions, e.g. by reducing the number of exit codes or making the usage of admitted
ones more uniform and independent from specific reasoning tasks.

Modeling competition. The Model&Solve track of past competition editions has
been replaced with an on-site event, the ASP Modeling Competition (Calimeri
et al., 2014b), in the spirit of the Prolog Programming Contest. This event at-
tracted a significant number of participants, even though it was not widely adver-
tised, as well as the interest of the community, thus calling for future continuation.
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Table 14: Detailed results of the Fifth ASP Competition (1/3). The benchmark domains are subdivided by tracks, and the entries “D”,
“O”, and “Q” in the P column indicate Decision, Optimization, or Query answering tasks, respectively. Further columns provide the
scores, cumulative CPU times for runs rewarded with positive scores, and numbers of time- and memory outs for the systems CLASP,
LP2BV2+BOOLECTOR, LP2GRAPH, LP2MAXSAT+CLASP, and LP2MIP2. Give-ups of LP2BV2+BOOLECTOR on two Graph
Colouring instances and LP2MAXSAT+CLASP on one Visit-all instance are neither scored nor counted as time- or memory outs. The
last five rows accumulate results for tracks and over all domains in which a system participated.

clasp lp2bv2+boolector lp2graph lp2maxsat+clasp lp2mip2
Domain P Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO

Labyrinth D 90.0 3396.0 2 0 15.0 1510.4 17 0 65.0 3201.9 7 0 40.0 2254.0 12 0 0.0 − 20 0
Stable Marriage D 95.0 2136.6 1 0 0.0 − 0 20 95.0 3122.9 1 0 100.0 3617.5 0 0 0.0 − 0 20

Bottle Filling D 100.0 170.4 0 0 55.0 2184.1 0 9 5.0 457.8 10 9 50.0 3100.8 1 9 0.0 − 11 9
Graceful Graphs D 40.0 756.4 12 0 35.0 1253.2 13 0 40.0 509.9 12 0 50.0 1068.1 10 0 0.0 − 20 0
Graph Colouring D 45.0 834.1 11 0 25.0 25.2 13 0 45.0 814.2 11 0 50.0 1055.0 10 0 30.0 1342.4 14 0
Hanoi Tower D 85.0 1498.3 3 0 85.0 1022.0 3 0 100.0 347.5 0 0 100.0 935.8 0 0 0.0 − 20 0
Incremental Scheduling D 0.0 − 5 15 0.0 − 3 17 0.0 − 3 17 0.0 − 3 17 0.0 − 3 17
Knight Tour with Holes D 0.0 − 0 20 0.0 − 0 20 0.0 − 0 20 0.0 − 0 20 0.0 − 0 20
Nomystery D 40.0 621.8 10 2 45.0 1363.8 3 8 45.0 834.2 6 5 45.0 726.6 7 4 5.0 196.6 10 9
Partner Units D 20.0 290.6 16 0 0.0 − 1 19 15.0 729.6 1 16 20.0 1133.4 0 16 0.0 − 1 19
Permutation Pattern Matching D 70.0 1556.6 1 5 40.0 735.8 0 12 65.0 1258.4 0 7 65.0 1589.5 0 7 35.0 1134.6 1 12
Qualitative Spatial Reasoning D 100.0 2124.4 0 0 0.0 − 19 1 50.0 688.0 10 0 50.0 716.7 10 0 10.0 1140.9 18 0
Reachability Q − − − − − − − − − − − − − − − − − − − −
Ricochet Robots D 100.0 2464.4 0 0 100.0 952.4 0 0 100.0 749.5 0 0 100.0 2267.5 0 0 0.0 − 20 0
Sokoban D 35.0 1076.9 13 0 35.0 852.6 6 7 30.0 739.5 13 1 35.0 1043.9 12 1 0.0 − 18 2
Solitaire D 85.0 112.6 3 0 80.0 1026.0 4 0 80.0 263.7 4 0 80.0 733.6 4 0 25.0 1287.6 15 0
Visit-all D 55.0 1846.2 9 0 100.0 2819.7 0 0 65.0 724.0 7 0 60.0 922.9 7 0 35.0 560.7 13 0
Weighted-Sequence Problem D 85.0 1551.3 3 0 70.0 2933.0 6 0 95.0 1477.1 1 0 90.0 2892.9 2 0 0.0 − 20 0

Connected Still Life O 72.5 9613.3 16 0 − − − − − − − − 15.0 3.3 17 0 10.0 424.8 18 0
Crossing Minimization O 95.6 4466.4 6 0 − − − − − − − − 30.0 637.2 14 0 0.0 − 20 0
Maximal Clique O 100.0 938.3 0 0 − − − − − − − − 65.0 1732.2 7 0 100.0 99.0 0 0
Valves Location O 53.8 6000.7 19 0 − − − − − − − − 5.0 156.9 6 13 0.0 − 0 20

Abstract Dialectical Frameworks O 100.0 1555.0 0 0 − − − − − − − − − − − − − − − −
Complex Optimization D 85.0 553.6 3 0 − − − − − − − − − − − − − − − −
Minimal Diagnosis D 100.0 199.1 0 0 − − − − − − − − − − − − − − − −
Strategic Companies Q − − − − − − − − − − − − − − − − − − − −

Track #1 185.0 5532.6 3 0 15.0 1510.4 17 20 160.0 6324.8 8 0 140.0 5871.5 12 0 0.0 0.0 20 20
Track #2 860.0 14904.0 86 42 670.0 15167.8 71 93 735.0 9593.4 78 75 795.0 18186.7 66 74 140.0 5662.8 184 88
Track #3 321.9 21018.7 41 0 0.0 0.0 0 0 0.0 0.0 0 0 115.0 2529.6 44 13 110.0 523.8 38 20
Track #4 285.0 2307.7 3 0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0
Overall 1651.9 43763.0 133 42 685.0 16678.2 88 113 895.0 15918.2 86 75 1050.0 26587.8 122 87 250.0 6186.6 242 128
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Table 15: Detailed results of the Fifth ASP Competition (2/3). The benchmark domains are subdivided by tracks, and the entries
“D”, “O”, and “Q” in the P column indicate Decision, Optimization, or Query answering tasks, respectively. Further columns pro-
vide the scores, cumulative CPU times for runs rewarded with positive scores, and numbers of time- and memory outs for the systems
LP2NORMAL2+CLASP, LP2SAT3+GLUCOSE, LP2SAT3+LINGELING, WASP-1, and WASP-1.5. Due to technical difficulties with
handling the encoding, WASP-1 was disqualified in Valves Location. The last five rows accumulate results for tracks and over all domains
in which a system participated.

lp2normal2+clasp lp2sat3+glucose lp2sat3+lingeling wasp-1 wasp-1.5
Domain P Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO

Labyrinth D 70.0 1831.5 6 0 35.0 1668.9 13 0 30.0 1600.7 14 0 45.0 2098.3 11 0 60.0 2754.6 1 7
Stable Marriage D 95.0 2911.3 1 0 95.0 3140.1 1 0 65.0 2060.7 7 0 65.0 1657.6 0 7 100.0 1164.1 0 0

Bottle Filling D 100.0 270.7 0 0 5.0 439.3 10 9 55.0 4622.3 0 9 100.0 1700.0 0 0 100.0 167.3 0 0
Graceful Graphs D 40.0 1356.5 12 0 40.0 497.9 12 0 45.0 2038.5 11 0 5.0 559.1 19 0 20.0 569.7 16 0
Graph Colouring D 45.0 608.9 11 0 45.0 811.9 11 0 50.0 873.7 10 0 25.0 202.1 15 0 35.0 409.3 13 0
Hanoi Tower D 100.0 1307.0 0 0 100.0 316.5 0 0 85.0 794.5 3 0 40.0 2670.4 12 0 70.0 1221.5 6 0
Incremental Scheduling D 0.0 − 3 17 0.0 − 3 17 0.0 − 3 17 0.0 − 5 15 0.0 − 3 17
Knight Tour with Holes D 0.0 − 0 20 0.0 − 0 20 0.0 − 0 20 0.0 − 18 2 0.0 − 0 20
Nomystery D 40.0 85.3 8 4 45.0 877.9 6 5 40.0 605.8 8 4 25.0 1501.2 15 0 35.0 1032.0 5 8
Partner Units D 20.0 905.2 0 16 15.0 828.3 1 16 15.0 1236.9 1 16 5.0 125.5 3 16 15.0 994.7 2 15
Permutation Pattern Matching D 65.0 1542.3 0 7 65.0 1265.1 0 7 65.0 1061.5 0 7 55.0 1053.0 1 8 65.0 611.3 1 6
Qualitative Spatial Reasoning D 100.0 1701.7 0 0 50.0 684.0 10 0 50.0 926.0 10 0 90.0 2276.1 2 0 75.0 1992.9 0 5
Reachability Q − − − − − − − − − − − − 80.0 2182.1 0 4 80.0 2408.0 0 4
Ricochet Robots D 100.0 1255.5 0 0 100.0 891.8 0 0 100.0 945.0 0 0 30.0 1859.3 14 0 35.0 1144.3 13 0
Sokoban D 30.0 581.4 14 0 30.0 831.6 13 1 25.0 245.5 14 1 5.0 60.0 19 0 30.0 742.5 12 2
Solitaire D 80.0 627.9 4 0 80.0 298.1 4 0 85.0 561.8 3 0 75.0 685.5 5 0 85.0 609.3 3 0
Visit-all D 65.0 918.6 7 0 65.0 783.7 7 0 90.0 2997.0 2 0 25.0 28.9 15 0 30.0 20.1 14 0
Weighted-Sequence Problem D 85.0 2588.4 3 0 95.0 1751.5 1 0 85.0 3093.4 3 0 45.0 2608.0 11 0 65.0 2699.5 7 0

Connected Still Life O 20.0 151.0 16 0 − − − − − − − − 96.3 10202.5 17 0 85.6 9601.2 17 0
Crossing Minimization O 70.0 1931.6 6 0 − − − − − − − − 58.8 10800.0 20 0 40.6 7200.0 20 0
Maximal Clique O 15.0 1344.0 17 0 − − − − − − − − 69.4 11451.0 17 0 55.0 12000.0 20 0
Valves Location O 20.0 1240.4 18 0 − − − − − − − − Disq. Disq. Disq. Disq. 5.0 1.1 13 6

Abstract Dialectical Frameworks O 80.0 1617.9 4 0 − − − − − − − − 35.6 2699.2 15 0 35.6 2710.5 15 0
Complex Optimization D 100.0 1340.7 0 0 − − − − − − − − 0.0 − 20 0 0.0 − 20 0
Minimal Diagnosis D 100.0 519.9 0 0 − − − − − − − − 65.0 4793.2 7 0 65.0 4831.3 7 0
Strategic Companies Q − − − − − − − − − − − − 0.0 − 0 20 0.0 − 0 20

Track #1 165.0 4742.8 7 0 130.0 4809.0 14 0 95.0 3661.4 21 0 110.0 3755.9 11 7 160.0 3918.7 1 7
Track #2 870.0 13749.4 62 64 735.0 10277.6 78 75 790.0 20001.9 68 74 605.0 17511.2 154 45 740.0 14622.4 95 77
Track #3 125.0 4667.0 57 0 0.0 0.0 0 0 0.0 0.0 0 0 224.5 32453.5 54 0 186.2 28802.3 70 6
Track #4 280.0 3478.5 4 0 0.0 0.0 0 0 0.0 0.0 0 0 100.6 7492.4 42 20 100.6 7541.8 42 20
Overall 1440.0 26637.7 130 64 865.0 15086.6 92 75 885.0 23663.2 89 74 1040.1 61213.0 261 72 1186.8 54885.2 208 110
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Table 16: Detailed results of the Fifth ASP Competition (3/3). The benchmark domains are subdivided by tracks, and the entries “D”,
“O”, and “Q” in the P column indicate Decision, Optimization, or Query answering tasks, respectively. Further columns provide the
scores, cumulative CPU times for runs rewarded with positive scores, and numbers of time- and memory outs for the systems WASP-2,
WASP-WPM1-ONLY-WEAK, CLASP-MT, LP2MIP2-MT, and LP2SAT3+PLINGELING-MT. Due to incorrect parallel optimization
w.r.t. non-HCF programs, CLASP-MT was disqualified in Abstract Dialectical Frameworks. The last five rows accumulate results for
tracks and over all domains in which a system participated.

wasp-2 wasp-wpm1-only-weak clasp-mt lp2mip2-mt lp2sat3+plingeling-mt
Domain P Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO

Labyrinth D 60.0 2787.5 1 7 − − − − 95.0 512.5 1 0 0.0 − 20 0 30.0 1659.3 14 0
Stable Marriage D 100.0 1161.5 0 0 − − − − 100.0 1427.3 0 0 0.0 − 0 20 100.0 2570.9 0 0

Bottle Filling D 100.0 169.7 0 0 − − − − 100.0 124.7 0 0 0.0 − 0 20 55.0 4023.4 0 9
Graceful Graphs D 20.0 552.4 16 0 − − − − 60.0 1117.3 8 0 0.0 − 20 0 55.0 1172.0 9 0
Graph Colouring D 35.0 393.0 13 0 − − − − 95.0 1691.3 1 0 75.0 3852.3 5 0 65.0 1681.4 7 0
Hanoi Tower D 70.0 1203.3 6 0 − − − − 100.0 919.2 0 0 0.0 − 20 0 100.0 613.2 0 0
Incremental Scheduling D 0.0 − 3 17 − − − − 0.0 − 3 17 0.0 − 3 17 0.0 − 3 17
Knight Tour with Holes D 0.0 − 0 20 − − − − 0.0 − 0 20 0.0 − 0 20 0.0 − 0 20
Nomystery D 35.0 663.5 5 8 − − − − 40.0 620.1 7 5 5.0 393.5 6 13 45.0 809.6 4 7
Partner Units D 15.0 1205.3 2 15 − − − − 25.0 488.2 15 0 0.0 − 1 19 10.0 234.9 0 18
Permutation Pattern Matching D 65.0 538.9 1 6 − − − − 70.0 1040.8 1 5 35.0 1133.2 1 12 65.0 552.4 0 7
Qualitative Spatial Reasoning D 75.0 2171.4 0 5 − − − − 95.0 1518.5 1 0 0.0 − 14 6 50.0 482.0 10 0
Reachability Q − − − − − − − − − − − − − − − − − − − −
Ricochet Robots D 35.0 1157.5 13 0 − − − − 100.0 744.3 0 0 0.0 − 20 0 100.0 400.7 0 0
Sokoban D 30.0 598.7 12 2 − − − − 50.0 1205.5 9 1 0.0 − 15 5 40.0 813.8 11 1
Solitaire D 85.0 609.4 3 0 − − − − 85.0 18.0 3 0 50.0 1801.5 10 0 85.0 319.0 3 0
Visit-all D 30.0 17.6 14 0 − − − − 95.0 2470.8 1 0 40.0 1193.4 12 0 100.0 1260.1 0 0
Weighted-Sequence Problem D 65.0 2659.8 7 0 − − − − 80.0 1230.3 2 2 0.0 − 11 9 95.0 1970.3 1 0

Connected Still Life O 85.6 9601.2 17 0 45.6 12000.0 20 0 100.0 9648.1 16 0 10.0 287.5 18 0 − − − −
Crossing Minimization O 40.6 7200.0 20 0 0.0 − 20 0 100.0 6142.4 7 0 0.0 − 20 0 − − − −
Maximal Clique O 55.0 12000.0 20 0 0.0 − 20 0 90.0 4544.9 4 0 100.0 95.7 0 0 − − − −
Valves Location O 5.0 1.1 13 6 Disq. Disq. Disq. Disq. 90.0 9323.6 17 0 0.0 − 0 20 − − − −
Abstract Dialectical Frameworks O − − − − 25.0 451.4 15 0 Disq. Disq. Disq. Disq. − − − − − − − −
Complex Optimization D − − − − − − − − 100.0 461.7 0 0 − − − − − − − −
Minimal Diagnosis D − − − − − − − − 100.0 191.4 0 0 − − − − − − − −
Strategic Companies Q − − − − − − − − − − − − − − − − − − − −

Track #1 160.0 3949.0 1 7 0.0 0.0 0 0 195.0 1939.8 1 0 0.0 0.0 20 20 130.0 4230.2 14 0
Track #2 660.0 11940.5 95 73 0.0 0.0 0 0 995.0 13189.0 51 50 205.0 8373.9 138 121 865.0 14332.8 48 79
Track #3 186.2 28802.3 70 6 45.6 12000.0 60 0 380.0 29659.0 44 0 110.0 383.2 38 20 0.0 0.0 0 0
Track #4 0.0 0.0 0 0 25.0 451.4 15 0 200.0 653.1 0 0 0.0 0.0 0 0 0.0 0.0 0 0
Overall 1006.2 44691.8 166 86 70.6 12451.4 75 0 1770.0 45440.9 96 50 315.0 8757.1 196 161 995.0 18563.0 62 79
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Table 17: Detailed results for systems in the SP category on alternative encodings (1/3). The benchmark domains are subdivided by
tracks, and the entries “D” and “O” in the P column indicate Decision or Optimization tasks, respectively. Further columns provide the
scores, cumulative CPU times for runs rewarded with positive scores, and numbers of time- and memory outs for the systems CLASP,
LP2BV2+BOOLECTOR, LP2GRAPH, and LP2MAXSAT+CLASP. Give-ups of LP2BV2+BOOLECTOR and LP2MAXSAT+CLASP
on one Visit-all instance each are neither scored nor counted as time- or memory outs. The last five rows accumulate results for tracks and
over all domains in which a system participated.

clasp lp2bv2+boolector lp2graph lp2maxsat+clasp
Domain P Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO

Graph Colouring D 85.0 2039.6 3 0 65.0 1771.0 7 0 80.0 2513.4 4 0 85.0 1676.3 3 0
Hanoi Tower D 100.0 648.8 0 0 100.0 199.5 0 0 100.0 51.0 0 0 100.0 252.9 0 0
Knight Tour with Holes D 5.0 9.1 19 0 0.0 − 20 0 5.0 41.1 19 0 0.0 − 20 0
Labyrinth D 90.0 2005.7 2 0 15.0 1291.8 17 0 70.0 3191.4 6 0 25.0 1144.4 15 0
Stable Marriage D 100.0 106.7 0 0 100.0 1674.5 0 0 100.0 418.1 0 0 100.0 415.2 0 0
Visit-all D 70.0 700.2 6 0 85.0 2896.1 2 0 60.0 1420.0 8 0 60.0 451.3 7 0

Bottle Filling D 100.0 94.8 0 0 55.0 1891.1 0 9 5.0 562.0 10 9 55.0 2623.7 0 9
Graceful Graphs D 35.0 823.8 13 0 15.0 825.5 17 0 25.0 445.0 15 0 25.0 756.1 15 0
Incremental Scheduling D 65.0 639.1 2 5 20.0 5.0 6 10 25.0 118.9 6 9 25.0 92.0 6 9
Nomystery D 35.0 43.0 13 0 45.0 1166.1 10 1 40.0 306.9 12 0 50.0 981.3 10 0
Partner Units D 65.0 1009.7 7 0 20.0 607.1 16 0 20.0 936.0 16 0 40.0 1283.7 12 0
Permutation Pattern Matching D 75.0 529.9 0 5 15.0 52.5 6 11 75.0 1943.0 0 5 75.0 1547.8 0 5
Qualitative Spatial Reasoning D 100.0 1528.1 0 0 0.0 − 20 0 50.0 494.3 10 0 50.0 543.7 10 0
Ricochet Robots D 100.0 2468.0 0 0 100.0 928.5 0 0 100.0 987.8 0 0 95.0 2958.7 1 0
Sokoban D 35.0 946.6 13 0 35.0 791.6 6 7 30.0 650.7 13 1 35.0 826.2 12 1
Solitaire D 95.0 597.0 1 0 95.0 164.1 1 0 95.0 74.4 1 0 95.0 151.8 1 0
Weighted-Sequence Problem D 100.0 259.4 0 0 100.0 620.5 0 0 100.0 902.7 0 0 100.0 980.3 0 0

Connected Still Life O 92.5 9406.2 15 0 − − − − − − − − 15.0 4.2 17 0
Crossing Minimization O 99.4 608.7 1 0 − − − − − − − − 35.0 690.7 13 0
Maximal Clique O 100.0 210.5 0 0 − − − − − − − − 65.0 1718.1 7 0
Valves Location O 96.9 11400.7 19 0 − − − − − − − − 5.0 85.7 6 13

Abstract Dialectical Frameworks O 94.4 1891.1 2 0 − − − − − − − − − − − −
Complex Optimization D 80.0 939.4 4 0 − − − − − − − − − − − −
Minimal Diagnosis D 100.0 106.7 0 0 − − − − − − − − − − − −

Track #1 450.0 5510.1 30 0 365.0 7832.9 46 0 415.0 7635.0 37 0 370.0 3940.1 45 0
Track #2 805.0 8939.4 49 10 500.0 7052.0 82 38 565.0 7421.7 83 24 645.0 12745.3 67 24
Track #3 388.8 21626.1 35 0 0.0 0.0 0 0 0.0 0.0 0 0 120.0 2498.7 43 13
Track #4 274.4 2937.2 6 0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0
Overall 1918.2 39012.8 120 10 865.0 14884.9 128 38 980.0 15056.7 120 24 1135.0 19184.1 155 37
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Table 18: Detailed results for systems in the SP category on alternative encodings (2/3). The benchmark domains are subdivided by
tracks, and the entries “D” and “O” in the P column indicate Decision or Optimization tasks, respectively. Further columns provide the
scores, cumulative CPU times for runs rewarded with positive scores, and numbers of time- and memory outs for the systems LP2MIP2,
LP2NORMAL2+CLASP, LP2SAT3+GLUCOSE, and LP2SAT3+LINGELING. The last five rows accumulate results for tracks and over
all domains in which a system participated.

lp2mip2 lp2normal2+clasp lp2sat3+glucose lp2sat3+lingeling
Domain P Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO

Graph Colouring D 15.0 266.4 17 0 85.0 1558.7 3 0 80.0 2597.6 4 0 90.0 2306.2 2 0
Hanoi Tower D 0.0 − 20 0 100.0 266.1 0 0 100.0 47.9 0 0 100.0 105.7 0 0
Knight Tour with Holes D 90.0 1346.6 2 0 10.0 246.3 18 0 0.0 − 20 0 0.0 − 20 0
Labyrinth D 0.0 − 20 0 75.0 3542.9 5 0 40.0 1586.8 12 0 25.0 1783.0 15 0
Stable Marriage D 100.0 753.1 0 0 100.0 403.4 0 0 100.0 442.9 0 0 100.0 452.9 0 0
Visit-all D 85.0 1570.1 3 0 65.0 218.5 7 0 60.0 1296.6 8 0 65.0 570.2 7 0

Bottle Filling D 0.0 − 11 9 100.0 172.2 0 0 5.0 537.5 10 9 30.0 2089.8 5 9
Graceful Graphs D 0.0 − 20 0 35.0 1012.1 13 0 25.0 442.0 15 0 25.0 777.3 15 0
Incremental Scheduling D 20.0 2.2 6 10 65.0 1346.1 2 5 25.0 121.3 6 9 25.0 198.2 6 9
Nomystery D 15.0 309.4 16 1 45.0 839.1 11 0 40.0 315.9 12 0 50.0 1267.9 10 0
Partner Units D 0.0 − 20 0 45.0 890.9 11 0 20.0 898.5 16 0 30.0 1212.5 14 0
Permutation Pattern Matching D 40.0 716.2 4 8 75.0 2006.2 0 5 70.0 1446.0 1 5 75.0 869.8 0 5
Qualitative Spatial Reasoning D 20.0 1665.8 16 0 100.0 1159.7 0 0 50.0 493.1 10 0 50.0 754.7 10 0
Ricochet Robots D 0.0 − 20 0 100.0 2307.7 0 0 100.0 974.1 0 0 100.0 828.7 0 0
Sokoban D 0.0 − 18 2 30.0 455.5 14 0 30.0 640.9 13 1 25.0 211.2 14 1
Solitaire D 25.0 1198.4 15 0 100.0 586.4 0 0 95.0 73.4 1 0 95.0 157.8 1 0
Weighted-Sequence Problem D 75.0 2875.2 5 0 100.0 81.5 0 0 100.0 898.3 0 0 100.0 713.2 0 0

Connected Still Life O 5.0 496.5 19 0 20.0 111.0 16 0 − − − − − − − −
Crossing Minimization O 85.0 1761.3 3 0 55.0 1628.3 9 0 − − − − − − − −
Maximal Clique O 100.0 96.8 0 0 20.0 1483.0 16 0 − − − − − − − −
Valves Location O 5.0 182.8 1 18 24.4 1811.7 18 0 − − − − − − − −
Abstract Dialectical Frameworks O − − − − 75.0 1133.1 5 0 − − − − − − − −
Complex Optimization D − − − − 100.0 1108.3 0 0 − − − − − − − −
Minimal Diagnosis D − − − − 100.0 225.8 0 0 − − − − − − − −

Track #1 290.0 3936.2 62 0 435.0 6235.9 33 0 380.0 5971.8 44 0 380.0 5218.0 44 0
Track #2 195.0 6767.2 151 30 795.0 10857.4 51 10 560.0 6841.0 84 24 605.0 9081.1 75 24
Track #3 195.0 2537.4 23 18 119.4 5034.0 59 0 0.0 0.0 0 0 0.0 0.0 0 0
Track #4 0.0 0.0 0 0 275.0 2467.2 5 0 0.0 0.0 0 0 0.0 0.0 0 0
Overall 680.0 13240.8 236 48 1624.4 24594.5 148 10 940.0 12812.8 128 24 985.0 14299.1 119 24
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Table 19: Detailed results for systems in the SP category on alternative encodings (3/3). The benchmark domains are subdivided by
tracks, and the entries “D” and “O” in the P column indicate Decision or Optimization tasks, respectively. Further columns provide the
scores, cumulative CPU times for runs rewarded with positive scores, and numbers of time- and memory outs for the systems WASP-1,
WASP-1.5, WASP-2, and WASP-WPM1-ONLY-WEAK. The last five rows accumulate results for tracks and over all domains in which
a system participated.

wasp-1 wasp-1.5 wasp-2 wasp-wpm1-only-weak
Domain P Score Time TO MO Score Time TO MO Score Time TO MO Score Time TO MO

Graph Colouring D 25.0 480.9 15 0 60.0 1908.0 8 0 60.0 1949.8 8 0 − − − −
Hanoi Tower D 75.0 790.9 5 0 100.0 523.7 0 0 100.0 544.9 0 0 − − − −
Knight Tour with Holes D 0.0 − 20 0 5.0 99.6 19 0 5.0 101.2 19 0 − − − −
Labyrinth D 40.0 1448.2 12 0 60.0 1843.7 2 6 60.0 1829.1 2 6 − − − −
Stable Marriage D 100.0 615.4 0 0 100.0 137.5 0 0 100.0 155.4 0 0 − − − −
Visit-all D 30.0 36.7 14 0 60.0 658.0 8 0 60.0 514.4 8 0 − − − −
Bottle Filling D 95.0 1001.0 0 1 100.0 116.7 0 0 100.0 114.2 0 0 − − − −
Graceful Graphs D 0.0 − 20 0 20.0 483.2 16 0 20.0 483.9 16 0 − − − −
Incremental Scheduling D 35.0 372.0 11 2 65.0 1324.5 2 5 65.0 1323.2 2 5 − − − −
Nomystery D 35.0 684.3 13 0 40.0 410.9 11 1 40.0 410.6 11 1 − − − −
Partner Units D 15.0 308.7 17 0 60.0 1878.8 8 0 60.0 1879.8 8 0 − − − −
Permutation Pattern Matching D 70.0 505.7 0 6 75.0 570.2 0 5 75.0 571.2 0 5 − − − −
Qualitative Spatial Reasoning D 95.0 2408.3 1 0 70.0 841.6 1 5 70.0 840.3 1 5 − − − −
Ricochet Robots D 0.0 − 20 0 35.0 1250.3 13 0 35.0 1248.9 13 0 − − − −
Sokoban D 5.0 58.2 19 0 30.0 448.0 12 2 30.0 448.6 13 1 − − − −
Solitaire D 95.0 377.8 1 0 95.0 38.8 1 0 95.0 39.3 1 0 − − − −
Weighted-Sequence Problem D 70.0 1214.9 6 0 100.0 325.0 0 0 100.0 325.3 0 0 − − − −
Connected Still Life O 18.8 604.2 17 0 53.1 4802.8 17 0 53.1 4802.7 17 0 0.0 − 20 0
Crossing Minimization O 60.0 12000.0 20 0 56.9 12000.0 20 0 56.9 12000.0 20 0 0.0 − 20 0
Maximal Clique O 68.8 11458.9 17 0 54.4 12000.0 20 0 54.4 12000.0 20 0 0.0 − 20 0
Valves Location O 0.0 − 20 0 10.0 561.4 9 9 10.0 559.7 9 9 0.0 − 20 0

Abstract Dialectical Frameworks O 36.3 2468.1 15 0 36.3 2468.1 15 0 − − − − 0.0 − 20 0
Complex Optimization D 0.0 − 20 0 0.0 − 20 0 − − − − − − − −
Minimal Diagnosis D 100.0 925.1 0 0 100.0 926.6 0 0 − − − − − − − −

Track #1 270.0 3372.1 66 0 385.0 5170.5 37 6 385.0 5094.8 37 6 0.0 0.0 0 0
Track #2 515.0 6930.9 108 9 690.0 7688.0 64 18 690.0 7685.3 65 17 0.0 0.0 0 0
Track #3 147.6 24063.1 74 0 174.4 29364.2 66 9 174.4 29362.4 66 9 0.0 0.0 80 0
Track #4 136.3 3393.2 35 0 136.3 3394.7 35 0 0.0 0.0 0 0 0.0 0.0 20 0
Overall 1068.9 37759.3 283 9 1385.7 45617.4 202 33 1249.4 42142.5 168 32 0.0 0.0 100 0
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